Carbon Nanotube Circuit Integration up to Sub-20 nm Channel Lengths

被引:68
作者
Shulaker, Max Marcel [1 ]
Van Rethy, Jelle [2 ]
Wu, Tony F. [1 ]
Liyanage, Luckshitha Suriyasena [1 ]
Wei, Hai [1 ]
Li, Zuanyi [1 ,3 ]
Pop, Eric [1 ]
Gielen, Georges [2 ]
Wong, H. -S. Philip [1 ]
Mitra, Subhasish [1 ,4 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Heverlee, Belgium
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
carbon nanotube; CNT; CNFET; scaling; VLSI; interface circuit; SINGLE; DENSITY; ARRAYS; ELECTRONICS; TRANSISTORS; PROGRESS; DESIGN; IMMUNE;
D O I
10.1021/nn406301r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon nanotube (CNT) field-effect transistors (CNFETs) are a promising emerging technology projected to achieve over an order of magnitude improvement in energy-delay product, a metric of performance and energy efficiency, compared to silicon-based circuits. However, due to substantial imperfections inherent with CNTs, the promise of CNFETs has yet to be fully realized. Techniques to overcome these imperfections have yielded promising results, but thus far only at large technology nodes (1 ion device size). Here we demonstrate the first very large scale integration (VLSI)-compatible approach to realizing CNFET digital circuits at highly scaled technology nodes, with devices ranging from 90 nm to sub-20 nm channel lengths. We demonstrate Inverters functioning at 1 MHz and a fully integrated CNFET infrared light sensor and interface circuit at 32 nm channel length. This demonstrates the feasibility of realizing more complex CNFET circuits at highly scaled technology nodes.
引用
收藏
页码:3434 / 3443
页数:10
相关论文
共 55 条
  • [1] Carbon nanotubes for high-performance electronics - Progress and prospect
    Appenzeller, J.
    [J]. PROCEEDINGS OF THE IEEE, 2008, 96 (02) : 201 - 211
  • [2] Sorting carbon nanotubes by electronic structure using density differentiation
    Arnold, Michael S.
    Green, Alexander A.
    Hulvat, James F.
    Stupp, Samuel I.
    Hersam, Mark C.
    [J]. NATURE NANOTECHNOLOGY, 2006, 1 (01) : 60 - 65
  • [3] Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET's
    Auth, CP
    Plummer, JD
    [J]. IEEE ELECTRON DEVICE LETTERS, 1997, 18 (02) : 74 - 76
  • [4] Progress in Carbon Nanotube Electronics and Photonics
    Avouris, Phaedon
    Martel, Richard
    [J]. MRS BULLETIN, 2010, 35 (04) : 306 - 313
  • [5] Ballistic to diffusive crossover of heat flow in graphene ribbons
    Bae, Myung-Ho
    Li, Zuanyi
    Aksamija, Zlatan
    Martin, Pierre N.
    Xiong, Feng
    Ong, Zhun-Yong
    Knezevic, Irena
    Pop, Eric
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [6] Universality of Short-Channel Effects in Undoped-Body Silicon Nanowire MOSFETs
    Bangsaruntip, Sarunya
    Cohen, Guy M.
    Majumdar, Amlan
    Sleight, Jeffrey W.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2010, 31 (09) : 903 - 905
  • [7] Carbon nanotubes based transistors as gas sensors: State of the art and critical review
    Bondavalli, Paolo
    Legagneux, Pierre
    Pribat, Didier
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2009, 140 (01) : 304 - 318
  • [8] Cao Q, 2013, NAT NANOTECHNOL, V8, P180, DOI [10.1038/nnano.2012.257, 10.1038/NNANO.2012.257]
  • [9] Low-Resistance Electrical Contact to Carbon Nanotubes With Graphitic Interfacial Layer
    Chai, Yang
    Hazeghi, Arash
    Takei, Kuniharu
    Chen, Hong-Yu
    Chan, Philip C. H.
    Javey, Ali
    Wong, H. -S. Philip
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (01) : 12 - 19
  • [10] Development of Infrared Detectors Using Single Carbon-Nanotube-Based Field-Effect Transistors
    Chen, Hongzhi
    Xi, Ning
    Lai, King W. C.
    Fung, Carmen K. M.
    Yang, Ruiguo
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2010, 9 (05) : 582 - 589