Surface Plasmon-Mediated Nanoscale Localization of Laser-Driven sub-Terahertz Spin Dynamics in Magnetic Dielectrics

被引:40
作者
Chekhov, Alexander L. [1 ,2 ,3 ]
Stognij, Alexander, I [4 ]
Satoh, Takuya [5 ]
Murzina, Tatiana, V [1 ]
Razdolski, Ilya [3 ]
Stupakiewicz, Andrzej [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Phys, Moscow 119991, Russia
[2] Univ Bialystok, Fac Phys, PL-15245 Bialystok, Poland
[3] Fritz Haber Inst Max Planck Soc, D-14195 Berlin, Germany
[4] NASB, Sci Pract Mat Res Ctr, Minsk 220072, BELARUS
[5] Kyushu Univ, Dept Phys, Fukuoka 8190395, Japan
关键词
Ultrafast spin dynamics; surface plasmon-polariton; inverse Faraday effect; rare-earth iron garnet; nonlinear optics; magnetoplasmonics;
D O I
10.1021/acs.nanolett.8b00416
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report spatial localization of the effective magnetic field generated via the inverse Faraday effect employing surface plasmon polaritons (SPPs) at Au/garnet interface. Analyzing both numerically and analytically the electric field of the SPPs at this interface, we corroborate our study with a proof-of-concept experiment showing efficient SPP-driven excitation of coherent spin precession with 0.41 THz frequency. We argue that the subdiffractional confinement of the SPP electric field enables strong spatial localization of the SPP-mediated excitation of spin dynamics. We demonstrate two orders of magnitude enhancement of the excitation efficiency at the surface plasmon resonance within a 100 nm layer of a dielectric garnet. Our findings broaden the horizons of ultrafast spin-plasmonics and open pathways toward nonthermal opto-magnetic recording on the nanoscale.
引用
收藏
页码:2970 / 2975
页数:6
相关论文
共 32 条
[1]   Quantum theory of the inverse Faraday effect [J].
Battiato, M. ;
Barbalinardo, G. ;
Oppeneer, P. M. .
PHYSICAL REVIEW B, 2014, 89 (01)
[2]  
Belotelov VI, 2011, NAT NANOTECHNOL, V6, P370, DOI [10.1038/nnano.2011.54, 10.1038/NNANO.2011.54]
[3]   Inverse Faraday effect in plasmonic heterostructures [J].
Belotelov, V. I. ;
Bezus, E. A. ;
Doskolovich, L. L. ;
Kalish, A. N. ;
Zvezdin, A. K. .
INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009), 2010, 200
[4]   Plasmon mediated inverse Faraday effect in a graphene-dielectric-metal structure [J].
Bychkov, Igor V. ;
Kuzmin, Dmitry A. ;
Tolkachev, Valentine A. ;
Plaksin, Pavel S. ;
Shavrov, Vladimir G. .
OPTICS LETTERS, 2018, 43 (01) :26-29
[5]   Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer [J].
Challener, W. A. ;
Peng, Chubing ;
Itagi, A. V. ;
Karns, D. ;
Peng, Wei ;
Peng, Yingguo ;
Yang, XiaoMin ;
Zhu, Xiaobin ;
Gokemeijer, N. J. ;
Hsia, Y. -T. ;
Ju, G. ;
Rottmayer, Robert E. ;
Seigler, Michael A. ;
Gage, E. C. .
NATURE PHOTONICS, 2009, 3 (04) :220-224
[6]   High-quality Au/BIG/GGG magnetoplasmonic crystals fabricated by a combined ion-beam etching technique [J].
Chekhov, A. L. ;
Krutyanskiy, V. L. ;
Ketsko, V. A. ;
Stognij, A. I. ;
Murzina, T. V. .
OPTICAL MATERIALS EXPRESS, 2015, 5 (07) :1647-1652
[7]  
Choo H, 2012, NAT PHOTONICS, V6, P837, DOI [10.1038/nphoton.2012.277, 10.1038/NPHOTON.2012.277]
[8]   Phenomenological theory for coherent magnon generation through impulsive stimulated Raman scattering [J].
Gridnev, V. N. .
PHYSICAL REVIEW B, 2008, 77 (09)
[9]   Nonthermal ultrafast optical control of the magnetization in garnet films [J].
Hansteen, F ;
Kimel, A ;
Kirilyuk, A ;
Rasing, T .
PHYSICAL REVIEW B, 2006, 73 (01)
[10]   Third-order nonlinearity by the inverse Faraday effect in planar magnetoplasmonic structures [J].
Im, Song-Jin ;
Ri, Chol-Song ;
Ho, Kum-Song ;
Herrmann, Joachim .
PHYSICAL REVIEW B, 2017, 96 (16)