Composite Manganese Oxide Percolating Networks As a Suspension Electrode for an Asymmetric Flow Capacitor

被引:104
作者
Hatzell, Kelsey B. [1 ]
Fan, Lei [1 ]
Beidaghi, Majid [1 ]
Boota, Muhammad [1 ]
Pomerantseva, Ekaterina [1 ,3 ]
Kumbur, Emin C. [2 ]
Gogotsi, Yury [1 ]
机构
[1] Drexel Univ, Dept Mat Sci & Engn, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA
[2] Drexel Univ, Dept Mech Engn & Mech, Electrochem Energy Syst Lab, Philadelphia, PA 19104 USA
[3] Drexel Univ, Dept Mat Sci & Engn, Mat Electrochem Grp, Philadelphia, PA 19104 USA
关键词
asymmetric supercapacitor; electrochemical flow capacitor; flowable electrode; manganese oxide; percolating networks; suspension electrode; ENERGY-STORAGE; AQUEOUS-ELECTROLYTE; SUPERCAPACITOR; BEHAVIOR; BATTERY; PSEUDOCAPACITANCE; PERFORMANCE;
D O I
10.1021/am501650q
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, we examine the use of a percolating network of metal oxide (MnO2) as the active material in a suspension electrode as a way to increase the capacitance and energy density of an electrochemical flow capacitor. Amorphous manganese oxide was synthesized via a low-temperature hydrothermal approach and combined with carbon black to form composite flowable electrodes of different compositions. All suspension electrodes were tested in static configurations and consisted of an active solid material (MnO2 or activated carbon) immersed in aqueous neutral electrolyte (1 M Na2SO4). Increasing concentrations of carbon black led to better rate performance but at the cost of capacitance and viscosity. Furthermore, it was shown that an expanded voltage window of 1.6 V could be achieved when combining a composite MnO2-carbon black (cathode) and an activated carbon suspension (anode) in a charge balanced asymmetric device. The expansion of the voltage window led to a significant increase in the energy density to similar to 11 Wh kg(-1) at a power density of similar to 50 W kg(-1). These values are similar to 3.5 times and similar to 2 times better than a symmetric suspension electrode based on activated carbon.
引用
收藏
页码:8886 / 8893
页数:8
相关论文
共 45 条
[31]   NEW ALL-VANADIUM REDOX FLOW CELL [J].
SKYLLAS-KAZACOS, M ;
RYCHCIK, M ;
ROBINS, RG ;
FANE, AG ;
GREEN, MA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1986, 133 (05) :1057-1058
[32]   Progress in Flow Battery Research and Development [J].
Skyllas-Kazacos, M. ;
Chakrabarti, M. H. ;
Hajimolana, S. A. ;
Mjalli, F. S. ;
Saleem, M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (08) :R55-R79
[33]   Best practice methods for determining an electrode material's performance for ultracapacitors [J].
Stoller, Meryl D. ;
Ruoff, Rodney S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (09) :1294-1301
[34]   Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte [J].
Subramanian, V. ;
Zhu, Hongwei ;
Wei, Bingqing .
CHEMICAL PHYSICS LETTERS, 2008, 453 (4-6) :242-249
[35]   Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area [J].
Tang, Xiuhua ;
Liu, Zong-huai ;
Zhang, Chengxiao ;
Yang, Zupei ;
Wang, Zenglin .
JOURNAL OF POWER SOURCES, 2009, 193 (02) :939-943
[36]   Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor [J].
Toupin, M ;
Brousse, T ;
Bélanger, D .
CHEMISTRY OF MATERIALS, 2004, 16 (16) :3184-3190
[37]   A review of electrode materials for electrochemical supercapacitors [J].
Wang, Guoping ;
Zhang, Lei ;
Zhang, Jiujun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (02) :797-828
[38]   Manganese oxide-based materials as electrochemical supercapacitor electrodes [J].
Wei, Weifeng ;
Cui, Xinwei ;
Chen, Weixing ;
Ivey, Douglas G. .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (03) :1697-1721
[39]   An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications [J].
Whitacre, J. F. ;
Wiley, T. ;
Shanbhag, S. ;
Wenzhuo, Y. ;
Mohamed, A. ;
Chun, S. E. ;
Weber, E. ;
Blackwood, D. ;
Lynch-Bell, E. ;
Gulakowski, J. ;
Smith, C. ;
Humphreys, D. .
JOURNAL OF POWER SOURCES, 2012, 213 :255-264
[40]   Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device [J].
Whitacre, J. F. ;
Tevar, A. ;
Sharma, S. .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (03) :463-466