XRCC1 co-localizes and physically interacts with PCNA

被引:158
作者
Fan, JS
Otterlei, M
Wong, HK
Tomkinson, AE
Wilson, DM
机构
[1] NIA, Lab Mol Gerontol, Baltimore, MD 21224 USA
[2] Norwegian Univ Sci & Technol, Dept Canc Res & Mol Med, N-7489 Trondheim, Norway
[3] Univ Maryland, Med Ctr, Dept Radiat Oncol, Radiat Oncol Res Lab, Baltimore, MD 21201 USA
[4] Univ Maryland, Med Ctr, Greenbaum Canc Ctr, Baltimore, MD 21201 USA
关键词
D O I
10.1093/nar/gkh556
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
X-ray Repair Cross Complementing 1 (XRCC1) is thought to function as a scaffolding protein in both base excision repair and single-strand break repair (SSBR), since it interacts with several proteins participating in these related pathways and has no known enzymatic activity. Moreover, studies indicate that XRCC1 possesses discrete G(1) and S phase-specific functions. To further define the contribution of XRCC1 to DNA metabolism, we determined the in vivo localization pattern of this protein and searched for novel protein interactors. We report here that XRCC1 co-localizes with proliferating cell nuclear antigen (PCNA) at DNA replication foci, observed exclusively in the S phase of undamaged HeLa cells. Furthermore, fluorescence resonance energy transfer (FRET) analysis and co-immunoprecipitation indicate that XRCC1 and PCNA are in a complex and likely physically interact in vivo. In vitro biochemical analysis demonstrated that these two proteins associate directly, with the interaction being mediated by residues between amino acids 166 and 310 of XRCC1. The current evidence suggests a model where XRCC1 is sequestered via its interaction with PCNA to sites of DNA replication factories to facilitate efficient SSBR in S phase.
引用
收藏
页码:2193 / 2201
页数:9
相关论文
共 54 条
[1]   Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA [J].
Aas, PA ;
Otterlei, M ;
Falnes, PO ;
Vågbo, CB ;
Skorpen, F ;
Akbari, M ;
Sundheim, O ;
Bjorås, M ;
Slupphaug, G ;
Seeberg, E ;
Krokan, HE .
NATURE, 2003, 421 (6925) :859-863
[2]   DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells [J].
Arnaudeau, C ;
Lundin, C ;
Helleday, T .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (05) :1235-1245
[3]   WRN interacts physically and functionally with the recombination mediator protein RAD52 [J].
Baynton, K ;
Otterlei, M ;
Bjorås, M ;
von Kobbe, C ;
Bohr, VA ;
Seeberg, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (38) :36476-36486
[4]  
BRAND SR, 1994, J IMMUNOL, V153, P3070
[5]   CHANGES IN THE NUCLEAR-DISTRIBUTION OF CYCLIN (PCNA) BUT NOT ITS SYNTHESIS DEPEND ON DNA-REPLICATION [J].
BRAVO, R ;
MACDONALDBRAVO, H .
EMBO JOURNAL, 1985, 4 (03) :655-661
[6]   XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly(ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro [J].
Caldecott, KW ;
Aoufouchi, S ;
Johnson, P ;
Shall, S .
NUCLEIC ACIDS RESEARCH, 1996, 24 (22) :4387-4394
[7]   XRCC1 and DNA strand break repair [J].
Caldecott, KW .
DNA REPAIR, 2003, 2 (09) :955-969
[8]   AN INTERACTION BETWEEN THE MAMMALIAN DNA-REPAIR PROTEIN XRCC1 AND DNA LIGASE-III [J].
CALDECOTT, KW ;
MCKEOWN, CK ;
TUCKER, JD ;
LJUNGQUIST, S ;
THOMPSON, LH .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (01) :68-76
[9]   Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair [J].
Cappelli, E ;
Taylor, R ;
Cevasco, M ;
Abbondandolo, A ;
Caldecott, K ;
Frosina, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (38) :23970-23975