Hepatic Carbohydrate Response Element Binding Protein Activation Limits Nonalcoholic Fatty Liver Disease Development in a Mouse Model for Glycogen Storage Disease Type 1a

被引:29
作者
Lei, Yu [1 ]
Hoogerland, Joanne A. [1 ]
Bloks, Vincent W. [1 ]
Bos, Trijnie [2 ]
Bleeker, Aycha [1 ]
Wolters, Henk [1 ]
Wolters, Justina C. [1 ]
Hijmans, Brenda S. [1 ]
van Dijk, Theo H. [2 ]
Thomas, Rachel [3 ]
van Weeghel, Michel [4 ,5 ]
Mithieux, Gilles [6 ,7 ,8 ]
Houtkooper, Riekelt H. [4 ]
de Bruin, Alain [1 ,3 ]
Rajas, Fabienne [6 ,7 ,8 ]
Kuipers, Folkert [1 ,2 ]
Oosterveer, Maaike H. [1 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Pediat, POB 30-0001,Huispostcode CA84, NL-9700 RB Groningen, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Dept Lab Med, Groningen, Netherlands
[3] Univ Utrecht, Fac Vet Med, Dutch Mol Pathol Ctr, Utrecht, Netherlands
[4] Amsterdam Cardiovasc Sci, Lab Genet Metab Dis, Amsterdam Gastroenterol & Metab, Amsterdam, Netherlands
[5] Univ Amsterdam, Amsterdam Univ Med Ctr, Core Facil Metabol, Amsterdam, Netherlands
[6] Natl Inst Hlth & Med Res, U1213, Lyon, France
[7] Univ Lyon, Lyon, France
[8] Univ Lyon 1, Villeurbanne, France
关键词
INSULIN-RESISTANCE; GENE-EXPRESSION; METABOLITE REGULATION; GLUCOSE-PRODUCTION; ADIPOSE-TISSUE; CHREBP; TM6SF2; TRANSCRIPTION; STEATOSIS; DEFICIENCY;
D O I
10.1002/hep.31198
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background and Aims Glycogen storage disease (GSD) type 1a is an inborn error of metabolism caused by defective glucose-6-phosphatase catalytic subunit (G6PC) activity. Patients with GSD 1a exhibit severe hepatomegaly due to glycogen and triglyceride (TG) accumulation in the liver. We have shown that the activity of carbohydrate response element binding protein (ChREBP), a key regulator of glycolysis and de novo lipogenesis, is increased in GSD 1a. In the current study, we assessed the contribution of ChREBP to nonalcoholic fatty liver disease (NAFLD) development in a mouse model for hepatic GSD 1a. Approach and Results Liver-specific G6pc-knockout (L-G6pc(-/-)) mice were treated with adeno-associated viruses (AAVs) 2 or 8 directed against short hairpin ChREBP to normalize hepatic ChREBP activity to levels observed in wild-type mice receiving AAV8-scrambled short hairpin RNA (shSCR). Hepatic ChREBP knockdown markedly increased liver weight and hepatocyte size in L-G6pc(-/-) mice. This was associated with hepatic accumulation of G6P, glycogen, and lipids, whereas the expression of glycolytic and lipogenic genes was reduced. Enzyme activities, flux measurements, hepatic metabolite analysis and very low density lipoprotein (VLDL)-TG secretion assays revealed that hepatic ChREBP knockdown reduced downstream glycolysis and de novo lipogenesis but also strongly suppressed hepatic VLDL lipidation, hence promoting the storage of "old fat." Interestingly, enhanced VLDL-TG secretion in shSCR-treated L-G6pc(-/-) mice associated with a ChREBP-dependent induction of the VLDL lipidation proteins microsomal TG transfer protein and transmembrane 6 superfamily member 2 (TM6SF2), the latter being confirmed by ChIP-qPCR. Conclusions Attenuation of hepatic ChREBP induction in GSD 1a liver aggravates hepatomegaly because of further accumulation of glycogen and lipids as a result of reduced glycolysis and suppressed VLDL-TG secretion. TM6SF2, critical for VLDL formation, was identified as a ChREBP target in mouse liver. Altogether, our data show that enhanced ChREBP activity limits NAFLD development in GSD 1a by balancing hepatic TG production and secretion.
引用
收藏
页码:1638 / 1653
页数:16
相关论文
共 50 条
[1]   A link between hepatic glucose production and peripheral energy metabolism via hepatokines [J].
Abdul-Wahed, Aya ;
Gautier-Stein, Amandine ;
Casteras, Sylvie ;
Soty, Maud ;
Roussel, Damien ;
Romestaing, Caroline ;
Guillou, Herve ;
Tourette, Jean-Andre ;
Pleche, Nicolas ;
Zitoun, Carine ;
Gri, Blandine ;
Sardella, Anne ;
Rajas, Fabienne ;
Mithieux, Gilles .
MOLECULAR METABOLISM, 2014, 3 (05) :531-543
[2]   Triglyceride Metabolism in the Liver [J].
Alves-Bezerra, Michele ;
Cohen, David E. .
COMPREHENSIVE PHYSIOLOGY, 2018, 8 (01) :1-22
[3]   The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans [J].
Benhamed, Fadila ;
Denechaud, Pierre-Damien ;
Lemoine, Maud ;
Robichon, Celine ;
Moldes, Marthe ;
Bertrand-Michel, Justine ;
Ratziu, Vlad ;
Serfaty, Lawrence ;
Housset, Chantal ;
Capeau, Jacqueline ;
Girard, Jean ;
Guillou, Herve ;
Postic, Catherine .
JOURNAL OF CLINICAL INVESTIGATION, 2012, 122 (06) :2176-2194
[4]   Determinants of ectopic liver fat in metabolic disease [J].
Bosy-Westphal, Anja ;
Braun, Wiebke ;
Albrecht, Viktoria ;
Mueller, Manfred J. .
EUROPEAN JOURNAL OF CLINICAL NUTRITION, 2019, 73 (02) :209-214
[5]   Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice [J].
Bricambert, Julien ;
Miranda, Jonatan ;
Benhamed, Fadila ;
Postic, Jean Girard Catherine ;
Dentin, Renaud .
JOURNAL OF CLINICAL INVESTIGATION, 2010, 120 (12) :4316-4331
[6]   Downregulation of SIRT1 signaling underlies hepatic autophagy impairment in glycogen storage disease type Ia [J].
Cho, Jun-Ho ;
Kim, Goo-Young ;
Pan, Chi-Jiunn ;
Anduaga, Javier ;
Choi, Eui-Ju ;
Mansfield, Brian C. ;
Chou, Janice Y. .
PLOS GENETICS, 2017, 13 (05)
[7]   Type I glycogen storage diseases: disorders of the glucose-6-phosphatase/glucose-6-phosphate transporter complexes [J].
Chou, Janice Y. ;
Jun, Hyun Sik ;
Mansfield, Brian C. .
JOURNAL OF INHERITED METABOLIC DISEASE, 2015, 38 (03) :511-519
[8]   Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression [J].
Dentin, R ;
Pégorier, JP ;
Benhamed, F ;
Foufelle, F ;
Ferré, P ;
Fauveau, V ;
Magnuson, MA ;
Girard, J ;
Postic, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (19) :20314-20326
[9]   Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice [J].
Dentin, Renaud ;
Benhamed, Fadila ;
Hainault, Isabelle ;
Fauveau, Veronique ;
Foufelle, Fabienne ;
Dyck, Jason R. B. ;
Girard, Jean ;
Postic, Catherine .
DIABETES, 2006, 55 (08) :2159-2170
[10]   Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver [J].
Dentin, Renaud ;
Tomas-Cobos, Lidia ;
Foufelle, Fabienne ;
Leopold, Jane ;
Girard, Jean ;
Postic, Catherine ;
Ferre, Pascal .
JOURNAL OF HEPATOLOGY, 2012, 56 (01) :199-209