A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana

被引:101
作者
Ghosh, Daipayan [1 ]
Gupta, Anshika [1 ]
Mohapatra, Sridev [1 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Biol Sci, Hyderabad Campus, Hyderabad 500078, Telangana, India
关键词
PGPR; Osmotic-stress; Phytohormones; Exopolysaccharides; Arabidopsis thaliana; GROWTH-PROMOTING RHIZOBACTERIA; ANTIOXIDANT ENZYME-ACTIVITIES; PLANT-GROWTH; ABSCISIC-ACID; GIBBERELLIC-ACID; BACTERIA; AZOSPIRILLUM; CYTOKININ; PROLINE; L;
D O I
10.1007/s11274-019-2659-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The ability of plant growth promoting rhizobacteria (PGPR) for imparting abiotic stress tolerance to plants has been widely explored in recent years; however, the diversity and potential of these microbes have not been maximally exploited. In this study, we characterized four bacterial strains, namely, Pseudomonas aeruginosa PM389, Pseudomonas aeruginosa ZNP1, Bacillus endophyticus J13 and Bacillus tequilensis J12, for potential plant growth promoting (PGP) traits under osmotic-stress, induced by 25% polyethylene glycol (PEG) in the growth medium. Growth curve analysis was performed in LB medium with or without PEG, in order to understand the growth patterns of these bacteria under osmotic-stress. All strains were able to grow and proliferate under osmotic-stress, although their growth rate was slower than that under non-stressed conditions (LB without PEG). Bacterial secretions were analyzed for the presence of exopolysaccharides and phytohormones and it was observed that all four strains released these compounds into the media, both, under stressed and non-stressed conditions. In the Pseudomonas strains, osmotic stress caused a decrease in the levels of auxin (IAA) and cytokinin (tZ), but an increase in the levels of gibberellic acid. The Bacillus strains on the other hand showed a stress-induced increase in the levels of all three phytohormones. P. aeruginosa ZNP1 and B. endophyticus J13 exhibited increased EPS production under osmotic-stress. While osmotic stress caused a decrease in the levels of EPS in P. aeruginosa PM389, B. tequilensis J12 showed no change in EPS quantities released into the media under osmotic stress when compared to non-stressed conditions. Upon inoculating Arabidopsis thaliana seedlings with these strains individually, it was observed that all four strains were able to ameliorate the adverse effects of osmotic-stress (induced by 25% PEG in MS-Agar medium) in the plants, as evidenced by their enhanced fresh weight, dry weight and plant water content, as opposed to osmotic-stressed, non-inoculated plants.
引用
收藏
页数:15
相关论文
共 94 条
[1]  
Ahemad Munees, 2014, Journal of King Saud University Science, V26, P1, DOI 10.1016/j.jksus.2013.05.001
[2]  
Ahmad Parvaiz, 2010, Archives of Agronomy and Soil Science, V56, P575, DOI 10.1080/03650340903164231
[3]  
Ahn TS, 2007, J MICROBIOL BIOTECHN, V17, P52
[4]  
Akram HM, 2013, J ANIM PLANT SCI, V23, P1415
[5]   Drought Induced Changes in Growth, Osmolyte Accumulation and Antioxidant Metabolism of Three Maize Hybrids [J].
Anjum, Shakeel A. ;
Ashraf, Umair ;
Tanveer, Mohsin ;
Khan, Imran ;
Hussain, Saddam ;
Shahzad, Babar ;
Zohaib, Ali ;
Abbas, Farhat ;
Saleem, Muhammad F. ;
Ali, Iftikhar ;
Wang, Long C. .
FRONTIERS IN PLANT SCIENCE, 2017, 8
[6]   Cytokinin producing bacteria enhance plant growth in drying soil [J].
Arkhipova, T. N. ;
Prinsen, E. ;
Veselov, S. U. ;
Martinenko, E. V. ;
Melentiev, A. I. ;
Kudoyarova, G. R. .
PLANT AND SOIL, 2007, 292 (1-2) :305-315
[7]   Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp under drought stress [J].
Arzanesh, M. H. ;
Alikhani, H. A. ;
Khavazi, K. ;
Rahimian, H. A. ;
Miransari, M. .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2011, 27 (02) :197-205
[8]   Minimising toxicity of cadmium in plants-role of plant growth regulators [J].
Asgher, Mohd. ;
Khan, M. Iqbal R. ;
Anjum, Naser A. ;
Khan, Nafees A. .
PROTOPLASMA, 2015, 252 (02) :399-413
[9]  
Atia Iqbal Atia Iqbal, 2013, American Journal of Plant Sciences, V4, P1693
[10]   Azospirillum-plant relationships:: physiological, molecular, agricultural, and environmental advances (1997-2003) [J].
Bashan, Y ;
Holguin, G ;
de-Bashan, LE .
CANADIAN JOURNAL OF MICROBIOLOGY, 2004, 50 (08) :521-577