Observation of a quantum phase transition in the quantum Rabi model with a single trapped ion

被引:143
作者
Cai, M. -L. [1 ]
Liu, Z. -D. [1 ]
Zhao, W. -D. [1 ]
Wu, Y. -K. [1 ]
Mei, Q. -X. [1 ]
Jiang, Y. [1 ]
He, L. [1 ]
Zhang, X. [1 ,2 ]
Zhou, Z. -C. [1 ,3 ]
Duan, L. -M. [1 ]
机构
[1] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing, Peoples R China
[2] Renmin Univ, Dept Phys, Beijing, Peoples R China
[3] Beijing Acad Quantum Informat Sci, Beijing, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
ENTANGLEMENT; STATES; GENERATION; COLLOQUIUM; DYNAMICS; ATOMS; LIGHT; QUBIT;
D O I
10.1038/s41467-021-21425-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum phase transitions (QPTs) are usually associated with many-body systems in the thermodynamic limit when their ground states show abrupt changes at zero temperature with variation of a parameter in the Hamiltonian. Recently it has been realized that a QPT can also occur in a system composed of only a two-level atom and a single-mode bosonic field, described by the quantum Rabi model (QRM). Here we report an experimental demonstration of a QPT in the QRM using a Yb-171(+) ion in a Paul trap. We measure the spin-up state population and the average phonon number of the ion as two order parameters and observe clear evidence of the phase transition via adiabatic tuning of the coupling between the ion and its spatial motion. An experimental probe of the phase transition in a fundamental quantum optics model without imposing the thermodynamic limit opens up a window for controlled study of QPTs and quantum critical phenomena. Quantum phase transition occurs in many-body systems with abrupt changes in the ground state around zero temperature. Here the authors report signatures of quantum phase transition in single trapped ion that can be described using quantum Rabi model.
引用
收藏
页数:8
相关论文
共 64 条
[1]   Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation [J].
Aharonov, Dorit ;
van Dam, Wim ;
Kempe, Julia ;
Landau, Zeph ;
Lloyd, Seth ;
Regev, Oded .
SIAM REVIEW, 2008, 50 (04) :755-787
[2]   Superradiance transition in a system with a single qubit and a single oscillator [J].
Ashhab, S. .
PHYSICAL REVIEW A, 2013, 87 (01)
[3]   Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states [J].
Ashhab, S. ;
Nori, Franco .
PHYSICAL REVIEW A, 2010, 81 (04)
[4]   Quantum phase transition in the Dicke model with critical and noncritical entanglement [J].
Bakemeier, L. ;
Alvermann, A. ;
Fehske, H. .
PHYSICAL REVIEW A, 2012, 85 (04)
[5]   Nonequilibrium Quantum Phase Transitions in the Dicke Model [J].
Bastidas, V. M. ;
Emary, C. ;
Regler, B. ;
Brandes, T. .
PHYSICAL REVIEW LETTERS, 2012, 108 (04)
[6]   Analog quantum simulation of the Rabi model in the ultra-strong coupling regime [J].
Braumueller, Jochen ;
Marthaler, Michael ;
Schneider, Andre ;
Stehli, Alexander ;
Rotzinger, Hannes ;
Weides, Martin ;
Ustinov, Alexey V. .
NATURE COMMUNICATIONS, 2017, 8
[7]   Quantum rabi oscillation: A direct test of field quantization in a cavity [J].
Brune, M ;
Schmidt-Kaler, F ;
Maali, A ;
Dreyer, J ;
Hagley, E ;
Raimond, JM ;
Haroche, S .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1800-1803
[8]   Optimal Quantum Control of Multimode Couplings between Trapped Ion Qubits for Scalable Entanglement [J].
Choi, T. ;
Debnath, S. ;
Manning, T. A. ;
Figgatt, C. ;
Gong, Z. -X. ;
Duan, L. -M. ;
Monroe, C. .
PHYSICAL REVIEW LETTERS, 2014, 112 (19)
[9]   Photonic Realization of the Quantum Rabi Model [J].
Crespi, A. ;
Longhi, S. ;
Osellame, R. .
PHYSICAL REVIEW LETTERS, 2012, 108 (16)
[10]   Superconducting Circuits for Quantum Information: An Outlook [J].
Devoret, M. H. ;
Schoelkopf, R. J. .
SCIENCE, 2013, 339 (6124) :1169-1174