Inverse Scattering for the 1-D Helmholtz Equation

被引:0
作者
Beltita, Ingrid [1 ]
Bunoiu, Renata [2 ]
机构
[1] Romanian Acad, Inst Math Simion Stoilow, POB 1-764, Bucharest, Romania
[2] CNRS, IECL, UMR 7502, F-57045 Metz, France
关键词
LINE;
D O I
10.1007/s11785-014-0441-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a uniqueness result for Nevanlinna functions. and this result is then used to give an elementary proof of the uniqueness in the inverse scattering problem for the equation on . Here is a real positive measurable function that is bounded from below by a positive constant, and is close to at +/- infinity.
引用
收藏
页码:639 / 666
页数:28
相关论文
共 13 条
[1]  
Aktosun T., 1990, INTEGRAL EQU OPER TH, V30, P279
[2]  
Aronszajn N., 1956, J. Anal. Math, V5, P321
[3]   Inverse scattering in a layered medium [J].
Beltita, I .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (9-10) :1739-1786
[4]   Scattering and inverse scattering for a left-definite Sturm-Liouville problem [J].
Bennewitz, C. ;
Brown, B. M. ;
Weikard, R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (08) :2380-2419
[5]   Time and frequency domain scattering for the one-dimensional wave equation [J].
Browning, BL .
INVERSE PROBLEMS, 2000, 16 (05) :1377-1403
[6]  
BROWNING BL, 1999, THESIS U WASHINGTON
[7]   ON THE INVERSE SCATTERING PROBLEM FOR THE HELMHOLTZ-EQUATION IN ONE DIMENSION [J].
CHEN, Y ;
ROKHLIN, V .
INVERSE PROBLEMS, 1992, 8 (03) :365-391
[8]   INVERSE SCATTERING ON THE LINE [J].
DEIFT, P ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (02) :121-251
[9]  
Faddeev L.D., 1959, USP MAT NAUK, V14, P72
[10]   OPERATOR METHODS FOR INVERSE SCATTERING ON THE REAL LINE [J].
MELIN, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1985, 10 (07) :677-766