In this paper, a delayed predator-prey system with Holling type III functional response incorporating a prey refuge and selective harvesting is considered. By analyzing the corresponding characteristic equations, the conditions for the local stability and existence of Hopf bifurcation for the system are obtained, respectively. By utilizing normal form method and center manifold theorem, the explicit formulas which determine the direction of Hopf bifurcation and the stability of bifurcating period solutions are derived. Finally, numerical simulations supporting the theoretical analysis are given.
机构:
Gannan Normal Univ, Coll Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaGannan Normal Univ, Coll Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
Gao, Shujing
Chen, Lansun
论文数: 0引用数: 0
h-index: 0
机构:
Gannan Normal Univ, Coll Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R ChinaGannan Normal Univ, Coll Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
Chen, Lansun
Teng, Zhidong
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaGannan Normal Univ, Coll Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China