Study of Volterra Integro-Differential Equations with Kernels Depending on a Parameter

被引:3
作者
Vlasov, V. V. [1 ]
Ortiz, R. Perez [1 ]
Rautian, N. A. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
ASYMPTOTIC STABILITY; SYSTEMS; ENERGY; BEHAVIOR;
D O I
10.1134/S0012266118030084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We carry out spectral analysis of operator functions that are the symbols of integro-differential equations with unbounded operator coefficients in a separable Hilbert space. The structure and localization of the spectrum of operator functions which are symbols of these equations play an important role in studies of the asymptotic behavior of their solutions.
引用
收藏
页码:363 / 380
页数:18
相关论文
共 24 条
[1]  
Amendola G, 2012, THERMODYNAMICS OF MATERIALS WITH MEMORY: THEORY AND APPLICATIONS, P1, DOI 10.1007/978-1-4614-1692-0
[2]  
[Anonymous], 2016, SPEKTRALNYI ANALIZ F
[3]  
[Anonymous], SPECTRAL ANAL VOLTER
[4]  
[Anonymous], OPERATOR THEORY ADV
[5]  
[Anonymous], 1980, LECT NOTES PHYS
[6]  
[Anonymous], INHOMOGENEOUS BOUNDA
[7]  
[Anonymous], 1978, FUNKC EKVACIOJ-SER I
[8]  
[Anonymous], 2011, J MATH SCI NEW YORK, DOI DOI 10.1007/S10958-011-0600-7
[9]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[10]   EXPONENTIAL STABILIZATION OF VOLTERRA INTEGRODIFFERENTIAL EQUATIONS IN HILBERT-SPACE [J].
DESCH, W ;
MILLER, RK .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 70 (03) :366-389