Synthesis and characterisation of In-doped MnWO4-type solid-solutions: Mn1-3xIn2x□xWO4 (x=0-0.11)

被引:11
作者
Gattermann, U. [1 ]
Park, S. -H. [1 ]
Kaliwoda, M. [2 ]
机构
[1] Univ Munich, Dept Earth & Environm Sci, Sect Crystallog, D-80333 Munich, Germany
[2] Mineral Staatssammlung Munchen, D-80333 Munich, Germany
关键词
MnWO4; In-doping; Defects; Rietveld analysis; X-ray powder diffraction; Micro-Raman spectroscopy;
D O I
10.1016/j.jssc.2014.07.039
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Substitution of In3+ for Mn2+ in MnWO4, which is one of the most studied multiferroics, was conducted systematically by solid-state reactions at 1050 degrees C to obtain a series of Mn(1-3x)In2x square xWO4 solid solutions (x=0-0.11; the box indicates vacancy). The successful In-doping could be proven by electron microprobe, and statically disordered structures of this solid solution series were elucidated by Rietveld analyses with X-Ray powder diffraction (XPD) data. Its average structure maintains the space group P2/c at least up to the replacement of 33 at% Mn. The tendency of their unit cells proportionally enlarging with In-doping is an unexpected observation because In3+ is smaller than Mn2+. This could not be explained alone by average atomic bonding distances and angles evaluated from XPD data analyses. Complimentarily, micro-Raman spectra of Mn(1-3x)In2x square xWO4 materials feature a hardening of Raman modes due to stronger atomic bonds in W2O4 and WO2 units with increasing In-doping. This is considered as an inevitable consequence of broken bonding in directly neighbouring Mn-O bonds as the presence of In3+ in MnWO4 accompanies the creation of defects at Mn sites. The current study using XRD and micro-Raman suggests the enlarging local space around the bridging oxygen as the reason for the unexpected cell expansion when smaller In3+ along with defects replace Mn2+ in MnWO4. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:191 / 200
页数:10
相关论文
共 22 条
  • [1] Effect of different surfactants on the shape, growth and photoluminescence behavior of MnWO4 crystals synthesized by the microwave-hydrothermal method
    Almeida, M. A. P.
    Cavalcante, L. S.
    Varela, J. A.
    Siu Li, M.
    Longo, E.
    [J]. ADVANCED POWDER TECHNOLOGY, 2012, 23 (01) : 124 - 128
  • [2] Ion doping effects in multiferroic MnWO4
    Bahoosh, Safa Golrokh
    Wesselinowa, J. M.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (08)
  • [3] BOISEN MB, 1990, AM MINERAL, V75, P748
  • [4] Robust ferroelectric state in multiferroic Mn1-xZnxWO4
    Chaudhury, R. P.
    Ye, F.
    Fernandez-Baca, J. A.
    Lorenz, B.
    Wang, Y. Q.
    Sun, Y. Y.
    Mook, H. A.
    Chu, C. W.
    [J]. PHYSICAL REVIEW B, 2011, 83 (01)
  • [5] Magnetic and multiferroic phases of single-crystalline Mn0.85Co0.15WO4
    Chaudhury, R. P.
    Ye, F.
    Fernandez-Baca, J. A.
    Wang, Y. -Q.
    Sun, Y. Y.
    Lorenz, B.
    Mook, H. A.
    Chu, C. W.
    [J]. PHYSICAL REVIEW B, 2010, 82 (18)
  • [6] Suppression and recovery of the ferroelectric phase in multiferroic MnWO4
    Chaudhury, R. P.
    Lorenz, B.
    Wang, Y. Q.
    Sun, Y. Y.
    Chu, C. W.
    [J]. PHYSICAL REVIEW B, 2008, 77 (10)
  • [7] Fachinformationszentrum Karlsruhe, 2013, INORGANIC CRYSTAL ST
  • [8] Temperature-dependent Raman scattering study of multiferroic MnWO4
    Hoang, Luc Huy
    Hien, Nguyen T. M.
    Choi, W. S.
    Lee, Y. S.
    Taniguchi, K.
    Arima, T.
    Yoon, S.
    Chen, X. B.
    Yang, In-Sang
    [J]. JOURNAL OF RAMAN SPECTROSCOPY, 2010, 41 (09) : 1005 - 1010
  • [9] Raman spectroscopy of MnWO4
    Iliev, M. N.
    Gospodinov, M. M.
    Litvinchuk, A. P.
    [J]. PHYSICAL REVIEW B, 2009, 80 (21):
  • [10] MAGNETIC PHASE-TRANSITIONS OF MNWO4 STUDIED BY THE USE OF NEUTRON-DIFFRACTION
    LAUTENSCHLAGER, G
    WEITZEL, H
    VOGT, T
    HOCK, R
    BOHM, A
    BONNET, M
    FUESS, H
    [J]. PHYSICAL REVIEW B, 1993, 48 (09): : 6087 - 6098