Tissue-specific SMARCA4 binding at active and repressed regulatory elements during embryogenesis

被引:51
作者
Attanasio, Catia [1 ]
Nord, Alex S. [1 ]
Zhu, Yiwen [1 ]
Blow, Matthew J. [2 ]
Biddie, Simon C. [2 ,3 ]
Mendenhall, Eric M. [4 ,5 ,6 ]
Dixon, Jesse [7 ]
Wright, Crystal [2 ]
Hosseini, Roya [1 ]
Akiyama, Jennifer A. [1 ]
Holt, Amy [1 ]
Plajzer-Frick, Ingrid [1 ]
Shoukry, Malak [1 ]
Afzal, Veena [1 ]
Ren, Bing [7 ]
Bernstein, Bradley E. [4 ,5 ,6 ]
Rubin, Edward M. [1 ,2 ]
Visel, Axel [1 ,2 ]
Pennacchio, Len A. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA
[2] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA
[3] Cambridge Univ NHS Trust, Addenbrookes Hosp, Cambridge CB2 0QQ, England
[4] Massachusetts Gen Hosp, HHMI, Boston, MA 02114 USA
[5] Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02114 USA
[6] Harvard Univ, Sch Med, Boston, MA 02114 USA
[7] UCSD Sch Med, Ludwig Inst Canc Res, La Jolla, CA 92093 USA
基金
瑞士国家科学基金会;
关键词
CHROMATIN-REMODELING COMPLEX; EMBRYONIC STEM-CELLS; MUSCLE DEVELOPMENT; SWI/SNF COMPLEXES; SELF-RENEWAL; BRG1; ENHANCERS; GENOME; TRANSCRIPTION; EXPRESSION;
D O I
10.1101/gr.168930.113
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The SMARCA4 (also known as BRG1 in humans) chromatin remodeling factor is critical for establishing lineage-specific chromatin states during early mammalian development. However, the role of SMARCA4 in tissue-specific gene regulation during embryogenesis remains poorly defined. To investigate the genome-wide binding landscape of SMARCA4 in differentiating tissues, we engineered a Smarca4 FLAG knock-in mouse line. Using ChIP-seq, we identified similar to 51,000 SMARCA4associated regions across six embryonic mouse tissues (forebrain, hindbrain, neural tube, heart, limb, and face) at midgestation (E11.5). The majority of these regions was distal from promoters and showed dynamic occupancy, with most distal SMARCA4 sites (73%) confined to a single or limited subset of tissues. To further characterize these regions, we profiled active and repressive histone marks in the same tissues and examined the intersection of informative chromatin states and SMARCA4 binding. This revealed distinct classes of distal SMARCA4-associated elements characterized by activating and repressive chromatin signatures that were associated with tissue-specific up-or down-regulation of gene expression and relevant active/repressed biological pathways. We further demonstrate the predicted active regulatory properties of SMARCA4associated elements by retrospective analysis of tissue-specific enhancers and direct testing of SMARCA4-bound regions in transgenic mouse assays. Our results indicate a dual active/repressive function of SMARCA4 at distal regulatory sequences in vivo and support its role in tissue-specific gene regulation during embryonic development.
引用
收藏
页码:920 / 929
页数:10
相关论文
共 52 条
[1]   Deletion of ultraconserved elements yields viable mice [J].
Ahituv, Nadav ;
Zhu, Yiwen ;
Visel, Axel ;
Holt, Amy ;
Afzal, Veena ;
Pennacchio, Len A. ;
Rubin, Edward M. .
PLOS BIOLOGY, 2007, 5 (09) :1906-1911
[2]   A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro [J].
Armstrong, JA ;
Bieker, JJ ;
Emerson, BM .
CELL, 1998, 95 (01) :93-104
[3]   REST repression of neuronal genes requires components of the hSWI-SNF complex [J].
Battaglioli, E ;
Andrés, ME ;
Rose, DW ;
Chenoweth, JG ;
Rosenfeld, MG ;
Anderson, ME ;
Mandel, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (43) :41038-41045
[4]   A bivalent chromatin structure marks key developmental genes in embryonic stem cells [J].
Bernstein, BE ;
Mikkelsen, TS ;
Xie, XH ;
Kamal, M ;
Huebert, DJ ;
Cuff, J ;
Fry, B ;
Meissner, A ;
Wernig, M ;
Plath, K ;
Jaenisch, R ;
Wagschal, A ;
Feil, R ;
Schreiber, SL ;
Lander, ES .
CELL, 2006, 125 (02) :315-326
[5]   Role of Brg1 and HDAC2 in GR trans-repression of the pituitary POMC gene and misexpression in Cushing disease [J].
Bilodeau, Steve ;
Vallette-Kasic, Sophie ;
Gauthier, Yves ;
Figarella-Branger, Dominique ;
Brue, Thierry ;
Berthelet, France ;
Lacroix, Andre ;
Batista, Dalia ;
Stratakis, Constantine ;
Hanson, Jeanette ;
Meij, Bjorn ;
Drouin, Jacques .
GENES & DEVELOPMENT, 2006, 20 (20) :2871-2886
[6]   ChIP-Seq identification of weakly conserved heart enhancers [J].
Blow, Matthew J. ;
McCulley, David J. ;
Li, Zirong ;
Zhang, Tao ;
Akiyama, Jennifer A. ;
Holt, Amy ;
Plajzer-Frick, Ingrid ;
Shoukry, Malak ;
Wright, Crystal ;
Chen, Feng ;
Afzal, Veena ;
Bristow, James ;
Ren, Bing ;
Black, Brian L. ;
Rubin, Edward M. ;
Visel, Axel ;
Pennacchio, Len A. .
NATURE GENETICS, 2010, 42 (09) :806-U107
[7]   A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes [J].
Bultman, S ;
Gebuhr, T ;
Yee, D ;
La Mantia, C ;
Nicholson, J ;
Gilliam, A ;
Randazzo, F ;
Metzger, D ;
Chambon, P ;
Crabtree, G ;
Magnuson, T .
MOLECULAR CELL, 2000, 6 (06) :1287-1295
[8]   A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in β-globin expression and erythroid development [J].
Bultman, SJ ;
Gebuhr, TC ;
Magnuson, T .
GENES & DEVELOPMENT, 2005, 19 (23) :2849-2861
[9]   Polybromo-1-bromodomains bind histone H3 at specific acetyl-lysine positions [J].
Chandrasekaran, Renu ;
Thompson, Martin .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 355 (03) :661-666
[10]   Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes [J].
Chi, TH ;
Wan, M ;
Zhao, KJ ;
Taniuchi, I ;
Chen, L ;
Littman, DR ;
Crabtree, GR .
NATURE, 2002, 418 (6894) :195-199