Practical quantum advantage in quantum simulation

被引:392
作者
Daley, Andrew J. [1 ,2 ]
Bloch, Immanuel [3 ,4 ,5 ]
Kokail, Christian [6 ,7 ]
Flannigan, Stuart [1 ,2 ]
Pearson, Natalie [1 ,2 ]
Troyer, Matthias [8 ]
Zoller, Peter [6 ,7 ]
机构
[1] Univ Strathclyde, Dept Phys, Glasgow, Lanark, Scotland
[2] Univ Strathclyde, SUPA, Glasgow, Lanark, Scotland
[3] Max Planck Inst Quantum Opt, Garching, Germany
[4] Ludwig Maximilians Univ Munchen, Munich, Germany
[5] Munich Ctr Quantum Sci & Technol, Munich, Germany
[6] Univ Innsbruck, Innsbruck, Austria
[7] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Innsbruck, Austria
[8] Microsoft Corp, Redmond, WA 98052 USA
基金
英国工程与自然科学研究理事会;
关键词
RENORMALIZATION-GROUP; PHASE-TRANSITION; MOTT INSULATOR; ENTANGLEMENT; PHYSICS; STATES; ORDER;
D O I
10.1038/s41586-022-04940-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of quantum computing across several technologies and platforms has reached the point of having an advantage over classical computers for an artificial problem, a point known as 'quantum advantage'. As a next step along the development of this technology, it is now important to discuss 'practical quantum advantage', the point at which quantum devices will solve problems of practical interest that are not tractable for traditional supercomputers. Many of the most promising short-term applications of quantum computers fall under the umbrella of quantum simulation: modelling the quantum properties of microscopic particles that are directly relevant to modern materials science, high-energy physics and quantum chemistry. This would impact several important real-world applications, such as developing materials for batteries, industrial catalysis or nitrogen fixing. Much as aerodynamics can be studied either through simulations on a digital computer or in a wind tunnel, quantum simulation can be performed not only on future fault-tolerant digital quantum computers but also already today through special-purpose analogue quantum simulators. Here we overview the state of the art and future perspectives for quantum simulation, arguing that a first practical quantum advantage already exists in the case of specialized applications of analogue devices, and that fully digital devices open a full range of applications but require further development of fault-tolerant hardware. Hybrid digital-analogue devices that exist today already promise substantial flexibility in near-term applications.
引用
收藏
页码:667 / 676
页数:10
相关论文
共 115 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]   Adiabatic quantum computation [J].
Albash, Tameem ;
Lidar, Daniel A. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[3]   Quantum Simulators: Architectures and Opportunities [J].
Altman, Ehud ;
Brown, Kenneth R. ;
Carleo, Giuseppe ;
Carr, Lincoln D. ;
Demler, Eugene ;
Chin, Cheng ;
DeMarco, Brian ;
Economou, Sophia E. ;
Eriksson, Mark A. ;
Fu, Kai-Mei C. ;
Greiner, Markus ;
Hazzard, Kaden R. A. ;
Hulet, Randall G. ;
Kollar, Alicia J. ;
Lev, Benjamin L. ;
Lukin, Mikhail D. ;
Ma, Ruichao ;
Mi, Xiao ;
Misra, Shashank ;
Monroe, Christopher ;
Murch, Kater ;
Nazario, Zaira ;
Ni, Kang-Kuen ;
Potter, Andrew C. ;
Roushan, Pedram ;
Saffman, Mark ;
Schleier-Smith, Monika ;
Siddiqi, Irfan ;
Simmonds, Raymond ;
Singh, Meenakshi ;
Spielman, I. B. ;
Temme, Kristan ;
Weiss, David S. ;
Vuckovic, Jelena ;
Vuletic, Vladan ;
Ye, Jun ;
Zwierlein, Martin .
PRX QUANTUM, 2021, 2 (01)
[4]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[5]   The Hubbard model at half a century [J].
不详 .
NATURE PHYSICS, 2013, 9 (09) :523-523
[6]  
[Anonymous], 2005, The one-dimensional Hubbard model
[7]   Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer [J].
Aramon, Maliheh ;
Rosenberg, Gili ;
Valiante, Elisabetta ;
Miyazawa, Toshiyuki ;
Tamura, Hirotaka ;
Katzgraber, Helmut G. .
FRONTIERS IN PHYSICS, 2019, 7 (APR)
[8]   Analogue quantum chemistry simulation [J].
Argueello-Luengo, Javier ;
Gonzalez-Tudela, Alejandro ;
Shi, Tao ;
Zoller, Peter ;
Cirac, J. Ignacio .
NATURE, 2019, 574 (7777) :215-+
[9]   Digital-Analog Quantum Simulation of Spin Models in Trapped Ions [J].
Arrazola, Inigo ;
Pedernales, Julen S. ;
Lamata, Lucas ;
Solano, Enrique .
SCIENTIFIC REPORTS, 2016, 6
[10]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+