Perturbations, deformations, and variations (and "near-misses") in geometry, physics, and number theory

被引:17
作者
Mazur, B [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
D O I
10.1090/S0273-0979-04-01024-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:307 / 336
页数:30
相关论文
共 34 条
[1]  
[Anonymous], SELECTA MATH
[2]  
[Anonymous], 1994, U LECT SERIES
[3]  
Arnold V.I, 2003, Catastrophe Theory
[4]  
Artin M., 1978, COLLECTED PAPERS, VIII
[5]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[6]   On the modularity of elliptic curves over Q: Wild 3-adic exercises [J].
Breuil, C ;
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) :843-939
[7]   A path integral approach to the Kontsevich quantization formula [J].
Cattaneo, AS ;
Felder, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (03) :591-611
[8]   A short survey of noncommutative geometry [J].
Connes, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (06) :3832-3866
[9]  
Cornell G., 1997, MODULAR FORMS FERMAT, pxx+582
[10]  
CRAUDER B, 1995, PROG MATH, V129, P33