Higher-order rogue wave solutions of the Kundu-Eckhaus equation

被引:113
作者
Wang, Xin [1 ]
Yang, Bo [1 ]
Chen, Yong [1 ]
Yang, Yunqing [2 ]
机构
[1] E China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
[2] Zhejiang Ocean Univ, Sch Math Phys & Informat Sci, Zhoushan 316004, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
rogue wave; Kundu-Eckhaus equation; generalized Darboux transformation; NONLINEAR SCHRODINGER-EQUATIONS; SYMBOLIC COMPUTATION; EVOLUTION-EQUATIONS; SOLITON-SOLUTIONS; WATER-WAVES;
D O I
10.1088/0031-8949/89/9/095210
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate higher-order rogue wave solutions of the Kundu-Eckhaus equation, which contains quintic nonlinearity and the Raman effect in nonlinear optics. By means of a gauge transformation, the Kundu-Eckhaus equation is converted to an extended nonlinear Schrodinger equation. We derive the Lax pair, the generalized Darboux transformation, and the Nth-order rogue wave solution for the extended nonlinear Schrodinger equation. Then, by using the gauge transformation between the two equations, a concise unified formula of the Nth-order rogue wave solution with several free parameters for the Kundu-Eckhaus equation is obtained. In particular, based on symbolic computation, explicit rogue wave solutions to the Kundu-Eckhaus equation from the first to the third order are presented. Some figures illustrate dynamic structures of the rogue waves from the first to the fourth order. Moreover, through numerical calculations and plots, we show that the quintic and Raman-effect nonlinear terms affect the spatial distributions of the humps in higher-order rogue waves, although the amplitudes and the time of appearance of the humps are unchanged.
引用
收藏
页数:15
相关论文
共 55 条
  • [1] NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE
    ABLOWITZ, MJ
    KAUP, DJ
    NEWELL, AC
    SEGUR, H
    [J]. PHYSICAL REVIEW LETTERS, 1973, 31 (02) : 125 - 127
  • [2] Recent progress in investigating optical rogue waves
    Akhmediev, N.
    Dudley, J. M.
    Solli, D. R.
    Turitsyn, S. K.
    [J]. JOURNAL OF OPTICS, 2013, 15 (06)
  • [3] Waves that appear from nowhere and disappear without a trace
    Akhmediev, N.
    Ankiewicz, A.
    Taki, M.
    [J]. PHYSICS LETTERS A, 2009, 373 (06) : 675 - 678
  • [4] Rogue waves and rational solutions of the nonlinear Schroumldinger equation
    Akhmediev, Nail
    Ankiewicz, Adrian
    Soto-Crespo, J. M.
    [J]. PHYSICAL REVIEW E, 2009, 80 (02):
  • [5] EXACT 1ST-ORDER SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION
    AKHMEDIEV, NN
    ELEONSKII, VM
    KULAGIN, NE
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (02) : 809 - 818
  • [6] Rogue wave triplets
    Ankiewicz, Adrian
    Kedziora, David J.
    Akhmediev, Nail
    [J]. PHYSICS LETTERS A, 2011, 375 (28-29) : 2782 - 2785
  • [7] Rogue waves and rational solutions of the Hirota equation
    Ankiewicz, Adrian
    Soto-Crespo, J. M.
    Akhmediev, Nail
    [J]. PHYSICAL REVIEW E, 2010, 81 (04):
  • [8] Persistence of rogue waves in extended nonlinear Schrodinger equations: Integrable Sasa-Satsuma case
    Bandelow, U.
    Akhmediev, N.
    [J]. PHYSICS LETTERS A, 2012, 376 (18) : 1558 - 1561
  • [9] Rogue Waves Emerging from the Resonant Interaction of Three Waves
    Baronio, Fabio
    Conforti, Matteo
    Degasperis, Antonio
    Lombardo, Sara
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (11)
  • [10] Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves
    Baronio, Fabio
    Degasperis, Antonio
    Conforti, Matteo
    Wabnitz, Stefan
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (04)