A Pulse-Doppler Processing Scheme for Quadrature Compressive Sampling Radar

被引:0
作者
Liu, Chao [1 ]
Xi, Feng [1 ]
Chen, Shengyao [1 ]
Liu, Zhong [1 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Elect Engn, Nanjing 210094, Jiangsu, Peoples R China
来源
2014 19TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP) | 2014年
关键词
compressive sampling; quadrature sampling; pulse-Doppler processing; SIGNAL RECOVERY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quadrature compressive sampling (QuadCS) is a sub-Nyquist sampling system for acquiring inphase and quadrature (I/Q) components of radio-frequency signals. This paper discusses the application of the QuadCS system to pulse-Doppler radars and develops a compressive sampling pulse-Doppler (CoSaPD) processing scheme from the sub-Nyquist samples. The Doppler estimation is realized through spectrum analyzer as in classic processing. The detection is done on the Doppler bin data. The range estimation is performed through sparse recovery algorithms on the detected targets. Due to inherent detection property of the recovery algorithms, the detection threshold can be set at a low value and then the introduced false targets are removed in the range estimation stage. Simulation results show that the CoSaPD scheme with the data at one eighth the Nyquist rate and for SNR above -25dB can achieve performance of the classic processing with Nyquist samples.
引用
收藏
页码:676 / 681
页数:6
相关论文
共 23 条
[1]   Design and Analysis of Compressed Sensing Radar Detectors [J].
Anitori, Laura ;
Maleki, Arian ;
Otten, Matern ;
Baraniuk, Richard G. ;
Hoogeboom, Peter .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (04) :813-827
[2]  
[Anonymous], 2010, Principles of Modern Radar, DOI DOI 10.1049/SBRA021E
[3]  
[Anonymous], 2005, FUNDAMENTALS RADAR S
[4]   Identification of Parametric Underspread Linear Systems and Super-Resolution Radar [J].
Bajwa, Waheed U. ;
Gedalyahu, Kfir ;
Eldar, Yonina C. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (06) :2548-2561
[5]   Sub-Nyquist Radar via Doppler Focusing [J].
Bar-Ilan, Omer ;
Eldar, Yonina C. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (07) :1796-1811
[6]   Templates for convex cone problems with applications to sparse signal recovery [J].
Becker S.R. ;
Candès E.J. ;
Grant M.C. .
Mathematical Programming Computation, 2011, 3 (3) :165-218
[7]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592
[8]   Signal Processing With Compressive Measurements [J].
Davenport, Mark A. ;
Boufounos, Petros T. ;
Wakin, Michael B. ;
Baraniuk, Richard G. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (02) :445-460
[9]  
Fuchs JJ, 2010, LECT NOTES COMPUT SC, V6134, P245, DOI 10.1007/978-3-642-13681-8_29
[10]   High-Resolution Radar via Compressed Sensing [J].
Herman, Matthew A. ;
Strohmer, Thomas .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (06) :2275-2284