ISOMORPHISMS AND SEVERAL CHARACTERIZATIONS OF MUSIELAK-ORLICZ-HARDY SPACES ASSOCIATED WITH SOME SCHRODINGER OPERATORS

被引:2
作者
Yang, Sibei [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Musielak-Orlicz-Hardy space; Schrodinger operator; L-harmonic function; isomorphism of Hardy space; atom; molecule; DUALITY; BMO; BOUNDEDNESS;
D O I
10.1007/s10587-015-0206-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L a parts per thousand" -Delta + V be a Schrodinger operator on a"e (n) with n a (c) 3/4 3 and V a (c) 3/4 0 satisfying Delta(-1) V a L (a)(a"e (n) ). Assume that phi: a"e (n) x [0,a) -> [0,a) is a function such that phi(x, center dot) is an Orlicz function, phi(center dot, t) a A (a)(a"e (n) ) (the class of uniformly Muckenhoupt weights). Let w be an L-harmonic function on a"e (n) with 0 < C (1) a (c) 1/2 w a (c) 1/2 C (2), where C (1) and C (2) are positive constants. In this article, the author proves that the mapping is an isomorphism from the Musielak-Orlicz-Hardy space associated with , to the Musielak-Orlicz-Hardy space under some assumptions on phi. As applications, the author further obtains the atomic and molecular characterizations of the space associated with w, and proves that the operator is an isomorphism of the spaces and . All these results are new even when phi(x, t) a parts per thousand" t (p) , for all x a a"e (n) and t a [0,a), with p a (n/(n + mu(0)), 1) and some mu(0) a (0, 1].
引用
收藏
页码:747 / 779
页数:33
相关论文
共 31 条
  • [1] [Anonymous], 1991, PURE APPL MATH
  • [2] On the product of functions in BMO and H1
    Bonami, Aline
    Iwaniec, Tadeusz
    Jones, Peter
    Zinsmeister, Michel
    [J]. ANNALES DE L INSTITUT FOURIER, 2007, 57 (05) : 1405 - 1439
  • [3] Paraproducts and products of functions in BMO(Rn) and H1 (Rn) through wavelets
    Bonami, Aline
    Grellier, Sandrine
    Luong Dang Ky
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (03): : 230 - 241
  • [4] BOUNDEDNESS OF SECOND ORDER RIESZ TRANSFORMS ASSOCIATED TO SCHRODINGER OPERATORS ON MUSIELAK-ORLICZ-HARDY SPACES
    Cao, Jun
    Chang, Der-Chen
    Yang, Dachun
    Yang, Sibei
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (04) : 1435 - 1463
  • [5] Duality of Hardy and BMO spaces associated with operators with heat kernel bounds
    Duong, XT
    Yan, L
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (04) : 943 - 973
  • [6] A Characterization of Hardy Spaces Associated with Certain Schrodinger Operators
    Dziubanski, Jacek
    Zienkiewicz, Jacek
    [J]. POTENTIAL ANALYSIS, 2014, 41 (03) : 917 - 930
  • [7] On Isomorphisms of Hardy Spaces Associated with Schrodinger Operators
    Dziubanski, Jacek
    Zienkiewicz, Jacek
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (03) : 447 - 456
  • [8] Fefferman C, 1972, ACTA MATH-DJURSHOLM, V129, P137, DOI 10.1007/BF02392215
  • [9] Garcia-Cuerva J., 1985, Weighted Norm Inequalities and Related Topics
  • [10] Grafakos L, 2008, GRAD TEXTS MATH, V249, P1, DOI 10.1007/978-0-387-09432-8_1