3D powder printed tetracalcium phosphate scaffold with phytic acid binder: fabrication, microstructure and in situ X-Ray tomography analysis of compressive failure
被引:20
作者:
论文数: 引用数:
h-index:
机构:
Mandal, Sourav
[1
]
Meininger, Susanne
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wurzburg, Dept Funct Mat Med & Dent, Pleicherwall 2, D-97070 Wurzburg, GermanyIndian Inst Sci, Mat Res Ctr, Lab Biomat, Bangalore 560012, Karnataka, India
Meininger, Susanne
[2
]
Gbureck, Uwe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wurzburg, Dept Funct Mat Med & Dent, Pleicherwall 2, D-97070 Wurzburg, GermanyIndian Inst Sci, Mat Res Ctr, Lab Biomat, Bangalore 560012, Karnataka, India
Gbureck, Uwe
[2
]
论文数: 引用数:
h-index:
机构:
Basu, Bikramjit
[1
,3
]
机构:
[1] Indian Inst Sci, Mat Res Ctr, Lab Biomat, Bangalore 560012, Karnataka, India
[2] Univ Wurzburg, Dept Funct Mat Med & Dent, Pleicherwall 2, D-97070 Wurzburg, Germany
[3] Indian Inst Sci, Ctr Biosyst Sci & Engn, Bangalore 560012, Karnataka, India
One of the important aspects in 3D powder printing (3DPP) is the selection of binder for a specific material composition to produce scaffolds with desired microstructure and physico-chemical properties. To this end, a new powder-binder combination, namely tetracalcium phosphate (TTCP) and phytic acid (IP6) was investigated at ambient temperature, for low load bearing application. A minimal deviation (< 200 mu m, w.r.t. computer aided design) was observed in the final sample through optimization of 3DPP process, along with minimum strut and macro-pore size of 200 and 750 mu m, respectively. Importantly, the printed scaffolds exhibited compressive strength of 4-8.5 MPa (in the range of cancellous bone) and in vitro dissolution experiments in phosphate buffered saline (PBS) upto one month revealed gradual degradation in strength property. The TTCP scaffolds are characterized to be moderately porous (similar to 40%) with high interconnectivity, which is essential for vascularization and good osteoconductivity. Another major aim of this study was to demonstrate the failure mechanism of 3D powder-printed scaffolds using monotonic and intermittent compression coupled with micro-computed tomography (mu CT) imaging. these results, we have demonstrated the origin of crack generation and propagation under compressive loading in relation to the unique microstructure, obtained through 3DPP. These findings enable us to acquire a deeper insight of the relationship between structural attributes and failure behavior, to further tailor the 3D powder printing process for ceramic biomaterials. [GRAPHICS] .
机构:
Washington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USAWashington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USA
Bose, Susmita
Roy, Mangal
论文数: 0引用数: 0
h-index: 0
机构:
Washington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USAWashington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USA
Roy, Mangal
Bandyopadhyay, Amit
论文数: 0引用数: 0
h-index: 0
机构:
Washington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USAWashington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USA
机构:
Washington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USAWashington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USA
Bose, Susmita
Roy, Mangal
论文数: 0引用数: 0
h-index: 0
机构:
Washington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USAWashington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USA
Roy, Mangal
Bandyopadhyay, Amit
论文数: 0引用数: 0
h-index: 0
机构:
Washington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USAWashington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USA