Matrix representations for torsion-free nilpotent groups by Deep Thought

被引:16
作者
Nickel, W [1 ]
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
关键词
D O I
10.1016/j.jalgebra.2006.03.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
dWe present an algorithm for calculating a representation by unitriangular matrices over the integers of a finitely-generated torsion-free nilpotent group given by a polycyclic presentation. The algorithm uses polynomials computed by the Deep Thought algorithm which describe the multiplication in the given group. The algorithm is more efficient than a previous method. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:376 / 383
页数:8
相关论文
共 7 条
[1]  
[Anonymous], 1979, GRAD TEXTS MATH
[2]  
[Anonymous], 2004, GAP GROUPS ALGORITHM
[3]   Constructing faithful representations of finitely-generated torsion-free nilpotent groups [J].
De Graaf, WA ;
Nickel, W .
JOURNAL OF SYMBOLIC COMPUTATION, 2002, 33 (01) :31-41
[4]  
EICK B, 2000, POLYCYCLIC 2000 GAP
[5]  
Hall P., 1957, CAN MATH C U ALB
[6]  
Holt D. F., 2005, Handbook of Computational Group Theory
[7]  
Leedham-Green C. R., 1998, LMS J COMPUT MATH, V1, P9, DOI DOI 10.1112/S1461157000000127