Cellular delivery of peptide nucleic acids and inhibition of human telomerase

被引:156
作者
Hamilton, SE
Simmons, CG
Kathiriya, IS
Corey, DR [1 ]
机构
[1] Univ Texas, SW Med Sch, Howard Hughes Med Inst, Dept Pharmacol, Dallas, TX 75235 USA
[2] Univ Texas, SW Med Sch, Howard Hughes Med Inst, Dept Biochem, Dallas, TX 75235 USA
[3] Univ Texas, SW Med Sch, Med Scientist Training Program, Dallas, TX 75235 USA
来源
CHEMISTRY & BIOLOGY | 1999年 / 6卷 / 06期
关键词
cationic lipid; peptide nucleic acid; RNA; telomerase;
D O I
10.1016/S1074-5521(99)80046-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Human telomerase has an essential RNA component and is an ideal target for developing rules correlating oligonucleotide chemistry with disruption of biological function. Similarly, peptide nucleic acids (PNAs), DNA analogs that bind complementary sequences with high affinity, are outstanding candidates for inducing phenotypic changes through hybridization. Results: We identify PNAs directed to nontemplate regions of the telomerase RNA that can overcome RNA secondary structure and inhibit telomerase by intercepting the RNA component prior to holoenzyme assembly. Relative potencies of inhibition delineate putative structural domains. We describe a novel protocol for introducing PNAs into eukaryotic cells and report efficient inhibition of cellular telomerase by PNAs. Conclusions: PNAs directed to nontemplate regions are a new class of telomerase inhibitor and may contribute to the development of novel antiproliferative agents. The dependence of inhibition by nontemplate-directed PNAs on target sequence suggests that PNAs have great potential for mapping nucleic acid structure and predictably regulating biological processes. Our simple method for introducing PNAs into cells will not only be useful for probing the complex biology surrounding telomere length maintenance but can be broadly applied for controlling gene expression and functional genomics.
引用
收藏
页码:343 / 351
页数:9
相关论文
共 36 条
[1]   In vivo studies with antisense oligonucleotides [J].
Akhtar, S ;
Agrawal, S .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1997, 18 (01) :12-18
[2]   Reconstitution of human telomerase activity and identification of a minimal functional region of the human telomerase RNA [J].
Autexier, C ;
Pruzan, R ;
Funk, WD ;
Greider, CW .
EMBO JOURNAL, 1996, 15 (21) :5928-5935
[3]   Synthesis and characterization of a peptide nucleic acid conjugated to a D-peptide analog of insulin-like growth factor 1 for increased cellular uptake [J].
Basu, S ;
Wickstrom, E .
BIOCONJUGATE CHEMISTRY, 1997, 8 (04) :481-488
[4]   Reconstitution of human telomerase activity in vitro [J].
Beattie, TL ;
Zhou, W ;
Robinson, MO ;
Harrington, L .
CURRENT BIOLOGY, 1998, 8 (03) :177-180
[5]   ISOLATION OF ACTIVE GENES CONTAINING CAG REPEATS BY DNA STRAND INVASION BY A PEPTIDE NUCLEIC-ACID [J].
BOFFA, LC ;
CARPANETO, EM ;
ALLFREY, VG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (06) :1901-1905
[6]   PD-loop: A complex of duplex DNA with an oligonucleotide [J].
Bukanov, NO ;
Demidov, VV ;
Nielsen, PE ;
Frank-Kamenetskii, MD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (10) :5516-5520
[7]   Peptide nucleic acids: Expanding the scope of nucleic acid recognition [J].
Corey, DR .
TRENDS IN BIOTECHNOLOGY, 1997, 15 (06) :224-229
[8]   TELOMERASE ACTIVITY IN HUMAN OVARIAN-CARCINOMA [J].
COUNTER, CM ;
HIRTE, HW ;
BACCHETTI, S ;
HARLEY, CB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (08) :2900-2904
[9]   KINETICS AND MECHANISM OF POLYAMIDE (PEPTIDE) NUCLEIC-ACID BINDING TO DUPLEX DNA [J].
DEMIDOV, VV ;
YAVNILOVICH, MV ;
BELOTSERKOVSKII, BP ;
FRANKKAMENETSKII, MD ;
NIELSEN, PE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (07) :2637-2641
[10]   STABILITY OF PEPTIDE NUCLEIC-ACIDS IN HUMAN SERUM AND CELLULAR-EXTRACTS [J].
DEMIDOV, VV ;
POTAMAN, VN ;
FRANKKAMENETSKII, MD ;
EGHOLM, M ;
BUCHARD, O ;
SONNICHSEN, SH ;
NIELSEN, PE .
BIOCHEMICAL PHARMACOLOGY, 1994, 48 (06) :1310-1313