Monte Carlo stochastic Galerkin methods for the Boltzmann equation with uncertainties: Space-homogeneous case

被引:18
作者
Pareschi, L. [1 ]
Zanella, M. [2 ]
机构
[1] Univ Ferrara, Math & Comp Sci Dept, Via Machiavelli 35, I-44121 Ferrara, Italy
[2] Univ Pavia, Math Dept, Via Ferrata 5, I-27100 Pavia, Italy
关键词
Boltzmann equation; Kinetic equations; Uncertainty quantification; Direct simulation Monte Carlo methods; Stochastic Galerkin methods; CONVERGENCE PROOF; MODELS; PARTICLE; SCHEME;
D O I
10.1016/j.jcp.2020.109822
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we propose a novel numerical approach for the Boltzmann equation with uncertainties. The method combines the efficiency of classical direct simulation Monte Carlo (DSMC) schemes in the phase space together with the accuracy of stochastic Galerkin (sG) methods in the random space. This hybrid formulation makes it possible to construct methods that preserve the main physical properties of the solution along with spectral accuracy in the random space. The schemes are developed and analyzed in the case of space homogeneous problems as these contain the main numerical difficulties. Several test cases are reported, both in the Maxwell and in the variable hard sphere (VHS) framework, and confirm the properties and performance of the new methods. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 40 条
[1]  
[Anonymous], 2018, SEMA SIMAI SPRINGER
[2]  
[Anonymous], 2001, ESAIM: Proc.
[3]   A CONVERGENCE PROOF FOR NANBU SIMULATION METHOD FOR THE FULL BOLTZMANN-EQUATION [J].
BABOVSKY, H ;
ILLNER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (01) :45-65
[4]  
Babovsky H., 1986, Math. Methods Appl. Sci., V8, P223, DOI DOI 10.1002/MMA.1670080114
[5]  
Bird G.A., 1976, MOL GAS DYNAMICS
[6]  
Bobylev A, 1997, EUR J MECH B-FLUID, V16, P293
[7]   Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation [J].
Bobylev, AV ;
Nanbu, K .
PHYSICAL REVIEW E, 2000, 61 (04) :4576-4586
[8]  
BOBYLEV AV, 1975, DOKL AKAD NAUK SSSR+, V225, P1296
[9]  
Caflisch R. E., 1998, Acta Numerica, V7, P1, DOI 10.1017/S0962492900002804
[10]  
Carrillo JA, 2010, MODEL SIMUL SCI ENG, P297, DOI 10.1007/978-0-8176-4946-3_12