On Jacobians of curves with superelliptic components

被引:6
作者
Beshaj, L. [1 ]
Shaska, T. [1 ]
Shor, C. [2 ]
机构
[1] Oakland Univ, Dept Math, Rochester, MI 48309 USA
[2] Western New England Univ, Dept Math, Springfield, MA 01119 USA
来源
RIEMANN AND KLEIN SURFACES, AUTOMORPHISMS, SYMMETRIES AND MODULI SPACES | 2014年 / 629卷
关键词
AUTOMORPHISM GROUPS; RIEMANN SURFACES; GENUS-2;
D O I
10.1090/conm/629/12557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a family of non-hyperelliptic curves whose Jacobians decomposes into a product of superelliptic Jacobians. Moreover, we investigate the decomposition of Jacobians of superelliptic curves based on their automorphisms. For a curve given by the equation y(n) = f (x(m)), we provide a necessary and sufficient condition in terms of m and n for the the Jacobian of the curve to decompose.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 20 条
[3]  
[Anonymous], 1959, GROUPES ALGEBRIQUES
[4]  
Beshaj L., 2011, I. Albanian J. Math., V5, P115
[5]  
EKEDAHL T, 1993, CR ACAD SCI I-MATH, V317, P509
[6]   DIOPHANTINE APPROXIMATION ON ABELIAN-VARIETIES [J].
FALTINGS, G .
ANNALS OF MATHEMATICS, 1991, 133 (03) :549-576
[7]  
Faltings G., 1994, PERSPECT MATH, V15, P175
[8]   IDEMPOTENT RELATIONS AND FACTORS OF JACOBIANS [J].
KANI, E ;
ROSEN, M .
MATHEMATISCHE ANNALEN, 1989, 284 (02) :307-327
[9]   Genus 2 curves that admit a degree 5 map to an elliptic curve [J].
Magaard, Kay ;
Shaska, Tanush ;
Voelklein, Helmut .
FORUM MATHEMATICUM, 2009, 21 (03) :547-566
[10]  
Sanjeewa R., 2008, Albanian J. Math., V2, P199