Concurrent homoclinic bifurcation and Hopf bifurcation for a class of planar Filippov systems

被引:32
作者
Li, Liping [1 ]
Huang, Lihong [2 ,3 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Zhejiang, Peoples R China
[2] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[3] Hunan Womens Univ, Changsha 410004, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Planar Filippov systems; Homoclinic bifurcation; Hopf bifurcation; Limit cycle;
D O I
10.1016/j.jmaa.2013.09.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates both homoclinic bifurcation and Hopf bifurcation which occur concurrently in a class of planar perturbed discontinuous systems of Filippov type. Firstly, based on a geometrical interpretation and a new analysis of the so-called successive function, sufficient conditions are proposed for the existence and stability of homoclinic orbit of unperturbed systems. Then, with the discussion about Poincare map, bifurcation analyses of homoclinic orbit and parabolic parabolic (PP) type pseudo-focus are presented. It is shown that two limit cycles can appear from the two different kinds of bifurcation in planar Filippov systems. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 23 条
[11]   Generic bifurcations of low codimension of planar Filippov Systems [J].
Guardia, M. ;
Seara, T. M. ;
Teixeira, M. A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :1967-2023
[12]   On Hopf bifurcation in non-smooth planar systems [J].
Han, Maoan ;
Zhang, Weinian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (09) :2399-2416
[13]   Melnikov method for discontinuous planar systems [J].
Kukucka, Peter .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (12) :2698-2719
[14]  
KUNZE M, 2000, LECT NOTES MATH
[15]   Generalized Hopf bifurcation for non-smooth planar systems [J].
Küpper, T ;
Moritz, S .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 359 (1789) :2483-2496
[16]   One-parameter bifurcations in planar filippov systems [J].
Kuznetsov, YA ;
Rinaldi, S ;
Gragnani, A .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (08) :2157-2188
[17]  
Leine R., 2004, LECT NOTES APPL COMP
[18]   Bifurcations of equilibria in non-smooth continuous systems [J].
Leine, R. I. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 223 (01) :121-137
[19]  
Liberzon D., 2003, SYS CON FDN, P190, DOI 10.1007/978-1-4612-0017-8
[20]  
Rao M.Rama Mohana., 1980, ORDINARY DIFFERENTIA