ON TYPES OF ELLIPTIC PSEUDOPRIMES

被引:0
作者
Babinkostova, L. [1 ]
Hernandez-Espiet, A. [2 ]
Kim, H. [3 ]
机构
[1] Boise State Univ, Boise, ID 83725 USA
[2] Rutgers State Univ, New Brunswick, NJ USA
[3] Univ Wisconsin, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Elliptic curves; Pseudoprimes; Strong Elliptic Pseudoprimes; Euler Elliptic Pseudoprimes; NUMBER;
D O I
10.46298/jgcc.2021.13.1.6521
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize Silverman's [31] notions of elliptic pseudoprimes and elliptic Carmichael numbers to analogues of Euler-Jacobi and strong pseudoprimes. We inspect the relationships among Euler elliptic Carmichael numbers, strong elliptic Carmichael numbers, products of anomalous primes and elliptic Korselt numbers of Type I, the former two of which we introduce and the latter two of which were introduced by Mazur [21] and Silverman [31] respectively. In particular, we expand upon the work of Babinkostova et al. [3] on the density of certain elliptic Korselt numbers of Type I which are products of anomalous primes, proving a conjecture stated in [3].
引用
收藏
页码:1:1 / 1:33
页数:33
相关论文
共 34 条
  • [1] THERE ARE INFINITELY MANY CARMICHAEL NUMBERS
    ALFORD, WR
    GRANVILLE, A
    POMERANCE, C
    [J]. ANNALS OF MATHEMATICS, 1994, 139 (03) : 703 - 722
  • [2] Apostol T.M., 1976, INTRO ANAL NUMBER TH
  • [3] Anomalous primes and the elliptic Korselt criterion
    Babinkostova, L.
    Bahr, J. C.
    Kim, Y. H.
    Neyman, E.
    Taylor, G. K.
    [J]. JOURNAL OF NUMBER THEORY, 2019, 201 : 108 - 123
  • [4] Balasubramanian R, 1990, PROGR MATH, V91, P13
  • [5] Carmichael R D., 1912, Am. Math. Mon, V19, P22
  • [6] Pseudoprime reductions of elliptic curves
    Cojocaru, Alina Carmen
    Luca, Florian
    Shparunski, Igor E.
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 : 513 - 522
  • [7] Davenport H., 1980, Graduate Text in Mathemat- ics, V74
  • [8] Pseudoprime Reductions of Elliptic Curves
    David, C.
    Wu, J.
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (01): : 81 - 101
  • [9] Deu41 Deuring M., 1941, Abh. Math. Sem. Hamb., V14, P197, DOI 10.1007/BF02940746
  • [10] Diamond F., 2005, Graduate Texts in Mathematics, Vvol 228