Distributed control of a class of flexible mechanical systems with global constraint

被引:18
作者
He, Wei [1 ]
Yang, Chuan [2 ]
Meng, Tingting [2 ]
Sun, Changyin [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
distributed control; flexible structures; distributed parameter system; integral-Barrier Lyapunov function; global constraint; CONTROL MATCHED DISTURBANCE; BARRIER LYAPUNOV FUNCTION; EULER-BERNOULLI BEAM; SLIDING MODE CONTROL; BOUNDARY CONTROL; NONLINEAR-SYSTEMS; OUTPUT CONSTRAINT; VIBRATION CONTROL; ACTIVE DISTURBANCE; FEEDBACK-CONTROL;
D O I
10.1080/00207179.2015.1060364
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the constrained problem is investigated for both flexible string model and Euler-Bernoulli beam model with the tip payload, based on an infinite dimensional generalisation of a distributed control method. The control objectives are to develop the control law so that the motion of flexible mechanical systems can track a desired reference signal, and ensure that the string or beam remain in a constrained space. We prove that, with the proposed control, the tracking error is exponentially stable without violation of the constraint. The proof of convergence is based on an Integral-Barrier Lyapunov Function (IBLF), and extensive simulations are provided to illustrate the performance of the control system.
引用
收藏
页码:128 / 139
页数:12
相关论文
共 50 条
[1]  
[Anonymous], 1995, NONLINEAR ADAPTIVE C
[2]   Experimental results for the end-effector control of a single flexible robotic arm [J].
Aoustin, Y. ;
Chevallereau, C. ;
Glumineau, A. ;
Moog, C.H. .
IEEE Transactions on Control Systems Technology, 1994, 2 (04) :371-381
[3]   Wave suppression by nonlinear finite-dimensional control [J].
Armaou, A ;
Christofides, PD .
CHEMICAL ENGINEERING SCIENCE, 2000, 55 (14) :2627-2640
[4]   ACTIVE CONTROL OF FLEXIBLE SYSTEMS [J].
BALAS, MJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1978, 25 (03) :415-436
[5]   Distributed control of spatially invariant systems [J].
Bamieh, B ;
Paganini, F ;
Dahleh, MA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (07) :1091-1107
[6]   A Negative Imaginary Approach to Modeling and Control of a Collocated Structure [J].
Bhikkaji, Bharath ;
Moheimani, S. O. Reza ;
Petersen, Ian R. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2012, 17 (04) :717-727
[7]   Global stabilization of the Kuramoto-Sivashinsky equation via distributed output feedback control [J].
Christofides, PD ;
Armaou, A .
SYSTEMS & CONTROL LETTERS, 2000, 39 (04) :283-294
[8]   Distributed control design for spatially interconnected systems [J].
D'Andrea, R ;
Dullerud, GE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (09) :1478-1495
[9]   Predictive control of parabolic PDEs with state and control constraints [J].
Dubljevic, Stevan ;
El-Farra, Nael H. ;
Mhaskar, Prashant ;
Christofides, Panagiotis D. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2006, 16 (16) :749-772
[10]   Analysis and control of parabolic PDE systems with input constraints [J].
El-Farra, NH ;
Armaou, A ;
Christofides, PD .
AUTOMATICA, 2003, 39 (04) :715-725