Fine structure of the entanglement entropy in the O(2) model

被引:21
作者
Yang, Li-Ping [1 ]
Liu, Yuzhi [2 ]
Zou, Haiyuan [3 ]
Xie, Z. Y. [4 ]
Meurice, Y. [5 ]
机构
[1] Chongqing Univ, Dept Phys, Chongqing 401331, Peoples R China
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[3] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[4] Chinese Acad Sci, Inst Phys, POB 603, Beijing 100190, Peoples R China
[5] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
来源
PHYSICAL REVIEW E | 2016年 / 93卷 / 01期
基金
美国国家科学基金会;
关键词
2-DIMENSIONAL SYSTEMS; FIELD-THEORY; QUANTUM; TRANSITION;
D O I
10.1103/PhysRevE.93.012138
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We compare two calculations of the particle density in the superfluid phase of the O(2) model with a chemical potential mu in 1+ 1 dimensions. The first relies on exact blocking formulas from the Tensor Renormalization Group (TRG) formulation of the transfer matrix. The second is a worm algorithm. We show that the particle number distributions obtained with the two methods agree well. We use the TRG method to calculate the thermal entropy and the entanglement entropy. We describe the particle density, the two entropies and the topology of the world lines as we increase mu to go across the superfluid phase between the first two Mott insulating phases. For a sufficiently large temporal size, this process reveals an interesting fine structure: the average particle number and the winding number of most of the world lines in the Euclidean time direction increase by one unit at a time. At each step, the thermal entropy develops a peak and the entanglement entropy increases until we reach half-filling and then decreases in a way that approximately mirrors the ascent. This suggests an approximate fermionic picture.
引用
收藏
页数:11
相关论文
共 42 条
  • [1] Akerlund O., 2014, POS LATTICE, V2014, P243
  • [2] Multipartite entanglement detection in bosons
    Alves, CM
    Jaksch, D
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (11) : 110501 - 1
  • [3] [Anonymous], 2011, QUANTUM PHASE TRANSI
  • [4] Finite size effects in the presence of a chemical potential: A study in the classical nonlinear O(2) sigma model
    Banerjee, Debasish
    Chandrasekharan, Shailesh
    [J]. PHYSICAL REVIEW D, 2010, 81 (12):
  • [5] Magnetic crystals and helical liquids in alkaline-earth fermionic gases
    Barbarino, Simone
    Taddia, Luca
    Rossini, Davide
    Mazza, Leonardo
    Fazio, Rosario
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [6] WORLD-LINE QUANTUM MONTE-CARLO ALGORITHM FOR A ONE-DIMENSIONAL BOSE MODEL
    BATROUNI, GG
    SCALETTAR, RT
    [J]. PHYSICAL REVIEW B, 1992, 46 (14): : 9051 - 9062
  • [7] Gauge-invariant implementation of the Abelian-Higgs model on optical lattices
    Bazavov, A.
    Meurice, Y.
    Tsai, S. -W.
    Unmuth-Yockey, J.
    Zhang, Jin
    [J]. PHYSICAL REVIEW D, 2015, 92 (07):
  • [8] BEREZINSKII VL, 1972, SOV PHYS JETP-USSR, V34, P610
  • [9] Entanglement entropy and quantum field theory
    Calabrese, P
    Cardy, J
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
  • [10] Entanglement entropy and quantum field theory: A non-technical introduction
    Calabrese, Pasquale
    Cardy, John
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (03) : 429 - 438