Morrey-type estimates for commutator of fractional integral associated with Schrodinger operators on the Heisenberg group

被引:0
|
作者
Guliyev, Vagif S. [1 ,2 ,3 ]
Akbulut, Ali [1 ]
Namazov, Faiq M. [4 ]
机构
[1] Ahi Evran Univ, Dep Math, Kirsehir, Turkey
[2] NAS Azerbaijan, Inst Math & Mech, Baku, Azerbaijan
[3] RUDN Univ, SM Nikolskii Inst Math, Moscow, Russia
[4] Baku State Univ, Baku, Azerbaijan
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2018年
关键词
Schrodinger operator; Heisenberg group; Central generalized Morrey space; Campanato space; Fractional integral; Commutator; BMO; SINGULAR-INTEGRALS; SPACES; POTENTIALS; BOUNDEDNESS; EQUATIONS;
D O I
10.1186/s13662-018-1730-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L = - Delta(Hn) + V be a Schrodinger operator on the Heisenberg group H-n m where the nonnegative potential V belongs to the reverse Holder class RH q , for some q(1) >= Q/2, and Q is the homogeneous dimension of H-n Let b belong to a new Campanato space Lambda(theta)(nu)(rho), and let T-beta(i) be the fractional integral operator associated with L. In this paper, we study the boundedness of the commutators [b,I-beta(L)] with b is an element of Lambda(theta)(nu)(rho) on central generalized Morrey spaces LMp,phi 1(alpha,V)(H-n), generalized Morrey spaces Mp,phi(alpha,V)(H-n), and vanishing generalized Morrey spaces VMp,phi(alpha,V)(H-n) associated with Schrodinger operator, respectively. When b belongs to Lambda(theta)(nu)(rho) with theta > 0, 0 < v < 1 and (phi 1 , phi 2) satisfies some conditions, we show that the commutator operator [b,I-beta(L)] is bounded from LMp,phi 1(alpha,V)to LMp,phi 1 alpha,V(H-n), from Mp,phi 1(alpha,V)(H-n) to Mq,phi 2(alpha,V)(H-n) and from VMp,phi(alpha,V)(1)(H-n) to VMq,phi(alpha,V)(2)(H-n),1/p - 1/q = (beta+ nu)/Q.
引用
收藏
页数:14
相关论文
共 50 条