A (3+1)-dimensional generalized BKP-Boussinesq equation: Lie group approach

被引:38
作者
Khalique, Chaudry Masood [1 ]
Moleleki, Letlhogonolo Daddy [1 ]
机构
[1] North West Univ, Dept Math Sci, Int Inst Symmetry Anal & Math Modelling, Mafikeng Campus,Private Bag X 2046, ZA-2735 Mmabatho, South Africa
关键词
A (3+ 1)-dimensional generalized BKP-Boussinesq equation; Lie point symmetries; Exact solutions; Incomplete elliptic integral; ((G '/G)) expansion method; Conservation laws; TRAVELING-WAVE SOLUTIONS; EXPANSION; KP;
D O I
10.1016/j.rinp.2019.102239
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A (3+ 1)-D generalized B-type KP-Boussinesq equation, which was recently formulated in the literature, is investigated here from Lie group standpoint. A solution is obtained by Lie symmetry reductions and direct integration in terms of incomplete elliptic integral. Furthermore, hyperbolic and trigonometric functions solutions are derived by invoking the (('G/G-)) expansion method. Finally, we construct conservation laws of the aforementioned equation by utilizing the multiplier method and conservation theorem due to Ibragimov.
引用
收藏
页数:5
相关论文
共 42 条
[1]  
Ablowitz M J, 1991, SOLITONS NONLINEAR E
[2]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[3]   Analytical analysis of soliton propagation in microcavity wires [J].
Al Khawaja, U. ;
Eleuch, H. ;
Bahlouli, H. .
RESULTS IN PHYSICS, 2019, 12 :471-474
[4]  
Anco SC, 2017, FIELDS I COMMUN, V79, P119, DOI 10.1007/978-1-4939-6969-2_5
[5]  
[Anonymous], 2010, APPL SYMMETRY METHOD
[6]  
Bluman GW., 1989, Symmetries and Differential Equations
[7]   Local conservation laws, symmetries, and exact solutions for a Kudryashov-Sinelshchikov equation [J].
Bruzon, M. S. ;
Recio, E. ;
de la Rosa, R. ;
Gandarias, M. L. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (04) :1631-1641
[8]   Traveling wave solutions of the K(m, n) equation with generalized evolution [J].
Bruzon, M. S. ;
Gandarias, M. L. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (15) :5851-5857
[9]   New exact solutions of (2+1)-dimensional Gardner equation via the new sine-Gordon equation expansion method [J].
Chen, Y ;
Yan, ZY .
CHAOS SOLITONS & FRACTALS, 2005, 26 (02) :399-406
[10]   Symbolic Computation of Local Symmetries of Nonlinear and Linear Partial and Ordinary Differential Equations [J].
Cheviakov A.F. .
Mathematics in Computer Science, 2010, 4 (2-3) :203-222