Algorithm to compute the maximal abelian dimension of Lie algebras

被引:4
作者
Ceballos, M. [2 ]
Nunez, J. [2 ]
Tenorio, A. F. [1 ]
机构
[1] Univ Pablo Olavide, Dpto Econ, Met Cuant eHEc, Seville, Spain
[2] Univ Seville, Dpto Geometria & Topol, Seville, Spain
关键词
Solvable Lie algebra; Maximal abelian dimension; Algorithm; UPPER-TRIANGULAR MATRICES; SUBALGEBRAS;
D O I
10.1007/s00607-009-0029-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, the maximal abelian dimension is computationally obtained for an arbitrary finite-dimensional Lie algebra, defined by its nonzero brackets. More concretely, we describe and implement an algorithm which computes such a dimension by running it in the symbolic computation package MAPLE. Finally, we also show a computational study related to this implementation, regarding both the computing time and the memory used.
引用
收藏
页码:231 / 239
页数:9
相关论文
共 9 条
[1]   The maximal Abelian dimension of linear algebras formed by strictly upper triangular matrices [J].
Benjumea, J. C. ;
Nunez, J. ;
Tenorio, A. F. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (03) :1225-1233
[2]  
Benjumea J.C., 2004, EXTRACTA MATH, V19, P269
[3]  
Ceballos M, 2008, AN STI U OVID CO-MAT, V16, P59
[4]  
Krawtchouk M., 1927, REND CIRC MAT PALERM, V51, P126
[6]  
Suprunenko DA., 1968, Commutative matrices
[7]  
Tenorio AF, 2008, ACTA MATH UNIV COMEN, V77, P141
[8]   Classification and Casimir invariants of Lie-Poisson brackets [J].
Thiffeault, JL ;
Morrison, PJ .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 136 (3-4) :205-244
[9]  
Varadarajan V.S., 1984, Graduate Texts in Mathematics, V102