Noether theorem for generalized Chaplygin system on time scales

被引:12
作者
Jin, S. X. [2 ,3 ]
Zhang, Y. [1 ]
机构
[1] Suzhou Univ Sci & Technol, Coll Civil Engn, Suzhou 215011, Peoples R China
[2] Shangqiu Normal Univ, Sch Math & Stat, Shangqiu 476000, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Noether theorem; Conserved quantity; Generalized Chaplygin system; Time scales; CONSERVED QUANTITIES; BIRKHOFFIAN SYSTEM; SYMMETRIES; CALCULUS; DELAY;
D O I
10.1007/s12648-018-1345-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Noether theorem for generalized Chaplygin system on time scales is proposed and studied. The generalized Chaplygin formula for nonholonomic system on time scales is derived. The Noether theorems for generalized Chaplygin system on time scales are established, and two special cases of the Noether theorems for continuous and discrete generalized Chaplygin systems are given. Finally, two examples are given to illustrate the applications of the results.
引用
收藏
页码:883 / 890
页数:8
相关论文
共 41 条
[1]  
[Anonymous], 2013, ANAL MECH
[2]   An application of time scales to economics [J].
Atici, FM ;
Biles, DC ;
Lebedinsky, A .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (7-8) :718-726
[3]  
Bartosiewicz Z, 2010, J CONTROL, V17, P9
[4]   Noether's theorem on time scales [J].
Bartosiewicz, Zbigniew ;
Torres, Delfim F. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :1220-1226
[5]  
Bohner M, 2004, DYNAM SYST APPL, V13, P339
[6]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications
[7]   OPTIMAL SAMPLED-DATA CONTROL, AND GENERALIZATIONS ON TIME SCALES [J].
Bourdin, Loic ;
Trelat, Emmanuel .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2016, 6 (01) :53-94
[8]   Noether symmetries of the nonconservative and nonholonomic systems on time scales [J].
Cai PingPing ;
Fu JingLi ;
Guo YongXin .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2013, 56 (05) :1017-1028
[9]  
FANG JH, 2000, APPL MATH MECH, V21, P755
[10]   A formulation of Noether's theorem for fractional problems of the calculus of variations [J].
Frederico, Gastao S. F. ;
Torres, Delfim F. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) :834-846