Energy transfer between eigenmodes in multimodal atomic force microscopy

被引:27
作者
An, Sangmin [1 ,2 ]
Solares, Santiago D. [1 ,2 ,3 ]
Santos, Sergio [4 ]
Ebeling, Daniel [5 ]
机构
[1] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Maryland NanoCtr, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[4] Masdar Inst Sci & Technol, Inst Ctr Future Energy iFES, Lab Energy & Nanosci LENS, Abu Dhabi, U Arab Emirates
[5] Univ Giessen, Inst Appl Phys, D-35392 Giessen, Germany
基金
新加坡国家研究基金会;
关键词
multifrequency atomic force microscopy; energy transfer; dissipation; virial; polymers; SOFT MATTER; PHASE-CONTRAST; MODE; DISSIPATION; SURFACES; LIQUID;
D O I
10.1088/0957-4484/25/47/475701
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present experimental and computational investigations of tetramodal and pentamodal atomic force microscopy (AFM), respectively, whereby the first four or five flexural eigenmodes of the cantilever are simultaneously excited externally. This leads to six to eight additional observables in the form of amplitude and phase signals, with respect to the monomodal amplitude modulation method. We convert these additional observables into three or four dissipation and virial expressions, and show that these quantities can provide enhanced contrast that would otherwise remain hidden in the original observables. We also show that the complexity of the multimodal impact leads to significant energy transfer between the active eigenmodes, such that the dissipated power for individual eigenmodes may be positive or negative, while the total dissipated power remains positive. These results suggest that the contrast of individual eigenmodes in multifrequency AFM should be not be considered in isolation and that it may be possible to use different eigenfrequencies to probe sample properties that respond to different relaxation times.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Reconstruction of tip-surface interactions with multimodal intermodulation atomic force microscopy [J].
Borysov, Stanislav S. ;
Platz, Daniel ;
de Wijn, Astrid S. ;
Forchheimer, Daniel ;
Tolen, Eric A. ;
Balatsky, Alexander V. ;
Haviland, David B. .
PHYSICAL REVIEW B, 2013, 88 (11)
[2]   Force measurements with the atomic force microscope: Technique, interpretation and applications [J].
Butt, HJ ;
Cappella, B ;
Kappl, M .
SURFACE SCIENCE REPORTS, 2005, 59 (1-6) :1-152
[3]   Cantilever energy effects on bimodal AFM: phase and amplitude contrast of multicomponent samples [J].
Chakraborty, Ishita ;
Yablon, Dalia G. .
NANOTECHNOLOGY, 2013, 24 (47)
[4]   Mapping of conservative and dissipative interactions in bimodal atomic force microscopy using open-loop and phase-locked-loop control of the higher eigenmode [J].
Chawla, Gaurav ;
Solares, Santiago D. .
APPLIED PHYSICS LETTERS, 2011, 99 (07)
[5]   Energy dissipation in tapping-mode atomic force microscopy [J].
Cleveland, JP ;
Anczykowski, B ;
Schmid, AE ;
Elings, VB .
APPLIED PHYSICS LETTERS, 1998, 72 (20) :2613-2615
[6]   Visualizing the Subsurface of Soft Matter: Simultaneous Topographical Imaging, Depth Modulation, and Compositional Mapping with Triple Frequency Atomic Force Microscopy [J].
Ebeling, Daniel ;
Eslami, Babak ;
Solares, Santiago De Jesus .
ACS NANO, 2013, 7 (11) :10387-10396
[7]   Amplitude modulation dynamic force microscopy imaging in liquids with atomic resolution: comparison of phase contrasts in single and dual mode operation [J].
Ebeling, Daniel ;
Solares, Santiago D. .
NANOTECHNOLOGY, 2013, 24 (13)
[8]   Identification of nanoscale dissipation processes by dynamic atomic force microscopy [J].
Garcia, R. ;
Gomez, C. J. ;
Martinez, N. F. ;
Patil, S. ;
Dietz, C. ;
Magerle, R. .
PHYSICAL REVIEW LETTERS, 2006, 97 (01)
[9]   Dynamic atomic force microscopy methods [J].
García, R ;
Pérez, R .
SURFACE SCIENCE REPORTS, 2002, 47 (6-8) :197-301
[10]  
García R, 1999, SURF INTERFACE ANAL, V27, P312, DOI 10.1002/(SICI)1096-9918(199905/06)27:5/6<312::AID-SIA496>3.0.CO