Creep behaviour of AISI 316H stainless steel under stress-varying creep loading conditions: primary creep regeneration

被引:14
作者
Li, X. [1 ,2 ]
Holdsworth, S. R. [1 ,3 ]
Mazza, E. [1 ,2 ,3 ]
Hosseini, E. [1 ]
机构
[1] Empa, Swiss Fed Labs Mat Sci & Technol, Dubendorf, Switzerland
[2] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Inst Mech Syst, Zurich, Switzerland
[3] Empa, Inspire Ctr Mech Integr, Dubendorf, Switzerland
基金
瑞士国家科学基金会;
关键词
Primary creep regeneration; creep re-priming; stress-varying creep loading; cyclic creep; internal stress; creep model; PLASTIC STRAINS; POLYCRYSTALLINE METALS; 304-STAINLESS-STEEL; REVERSAL; DEFORMATION; TENSION; TORSION; GRAINS; FLOW;
D O I
10.1080/09603409.2018.1523295
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Primary creep regeneration (PCR) is an important reported observation from creep under stress-varying conditions for several alloys. For a specimen deforming in the secondary creep regime, a stress reversal leads to an enhanced creep rate upon reloading due to reactivation of the primary creep regime (i.e. PCR). This paper focuses on an investigation of the PCR phenomenon during stress-varying creep loading for AISI 316H stainless steel at 650 degrees C. The experimental observations clarify the influence of different parameters (e.g. forward creep stress level, reverse stress magnitude and forward and reverse accumulated inelastic strain) on the extent of PCR activation. In addition, a correlation between the extent of PCR activation and inelastic strain accumulation during the reverse loading period was found, which was employed to develop an empirical-phenomenological model for prediction of the creep behaviour of the alloy after stress transients (e.g. stress reversals).
引用
收藏
页码:240 / 252
页数:13
相关论文
共 40 条
[1]  
Abe F, 2008, WOODHEAD PUBL MATER, P1, DOI 10.1533/9781845694012
[2]  
Al Mamun A, 2015, PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2015, VOL 5
[3]  
ANDRADE END, 1952, PROC R SOC LON SER-A, V213, P3
[4]  
ANDRADE END, 1960, PROC R SOC LON SER-A, V254, P291
[5]  
ANDRADE END, 1963, PROC R SOC LON SER-A, V271, P472
[6]   Influence of nitrogen alloying on properties of Fe-18Cr-12Mn-XN austenitic stainless steels [J].
Behjati, P. ;
Kermanpur, A. ;
Najafizadeh, A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 588 :43-48
[7]  
Bonora N., 2011, Conv. Nazionale IGF XXI, P120
[8]   Anisotropic strain hardening following load reversal during high-temperature creep testing of superalloy single crystals [J].
Carroll, MC ;
Serin, K ;
Eggeler, G .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 (1-2 SPEC. ISS.) :590-594
[9]   Internal strains between grains during creep deformation of an austenitic stainless steel [J].
Chen, B. ;
Hu, J. N. ;
Wang, Y. Q. ;
Kabra, S. ;
Cocks, A. C. F. ;
Smith, D. J. ;
Flewitt, P. E. J. .
JOURNAL OF MATERIALS SCIENCE, 2015, 50 (17) :5809-5816
[10]   Role of the misfit stress between grains in the Bauschinger effect for a polycrystalline material [J].
Chen, B. ;
Hu, J. N. ;
Wang, Y. Q. ;
Zhang, S. Y. ;
Van Petegem, S. ;
Cocks, A. C. F. ;
Smith, D. J. ;
Flewitt, P. E. J. .
ACTA MATERIALIA, 2015, 85 :229-242