First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications

被引:80
作者
Hu, S. X. [1 ]
Collins, L. A. [2 ]
Boehly, T. R. [1 ]
Kress, J. D. [2 ]
Goncharov, V. N. [1 ]
Skupsky, S. [1 ]
机构
[1] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
EQUATION-OF-STATE; MOLECULAR-DYNAMICS; HYDROGEN; IGNITION; ENERGY; MODEL; HOT;
D O I
10.1103/PhysRevE.89.043105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Thermal conductivity (kappa) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these kappa models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (rho > 100 g/cm(3)), large discrepancies in kappa have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of. for a variety of deuterium densities of rho = 1.0 to 673.518 g/cm(3), at temperatures varying from T = 5 x 10(3) K to T = 8 x 10(6) K. The resulting kappa(QMD) of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Gamma and theta, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode LILAC, the hydrosimulations using the fitted kappa(QMD) have shown up to similar to 20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using kappa(QMD). Moreover, the use of kappa(QMD) also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that kappa(QMD) changes mainly the inside ablation process during the hot-spot formation of an ICF implosion.
引用
收藏
页数:10
相关论文
共 68 条
[1]   Molecular dynamics simulations and generalized Lenard-Balescu calculations of electron-ion temperature equilibration in plasmas [J].
Benedict, Lorin X. ;
Surh, Michael P. ;
Castor, John I. ;
Khairallah, Saad A. ;
Whitley, Heather D. ;
Richards, David F. ;
Glosli, James N. ;
Murillo, Michael S. ;
Scullard, Christian R. ;
Grabowski, Paul E. ;
Michta, David ;
Graziani, Frank R. .
PHYSICAL REVIEW E, 2012, 86 (04)
[2]   Molecular Dynamics Simulations of Electron-Ion Temperature Equilibration in an SF6 Plasma [J].
Benedict, Lorin X. ;
Glosli, James N. ;
Richards, David F. ;
Streitz, Frederick H. ;
Hau-Riege, Stefan P. ;
London, Richard A. ;
Graziani, Frank R. ;
Murillo, Michael S. ;
Benage, John F. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[3]   Electron-ion temperature relaxation in hydrogen plasmas [J].
Blancard, Christophe ;
Clerouin, Jean ;
Faussurier, Gerald .
HIGH ENERGY DENSITY PHYSICS, 2013, 9 (02) :247-250
[4]   Multiple spherically converging shock waves in liquid deuterium [J].
Boehly, T. R. ;
Goncharov, V. N. ;
Seka, W. ;
Hu, S. X. ;
Marozas, J. A. ;
Meyerhofer, D. D. ;
Celliers, P. M. ;
Hicks, D. G. ;
Barrios, M. A. ;
Fratanduono, D. ;
Collins, G. W. .
PHYSICS OF PLASMAS, 2011, 18 (09)
[5]   Velocity and Timing of Multiple Spherically Converging Shock Waves in Liquid Deuterium [J].
Boehly, T. R. ;
Goncharov, V. N. ;
Seka, W. ;
Barrios, M. A. ;
Celliers, P. M. ;
Hicks, D. G. ;
Collins, G. W. ;
Hu, S. X. ;
Marozas, J. A. ;
Meyerhofer, D. D. .
PHYSICAL REVIEW LETTERS, 2011, 106 (19)
[6]   Demonstration of the shock-timing technique for ignition targets on the National Ignition Facility [J].
Boehly, T. R. ;
Munro, D. ;
Celliers, P. M. ;
Olson, R. E. ;
Hicks, D. G. ;
Goncharov, V. N. ;
Collins, G. W. ;
Robey, H. F. ;
Hu, S. X. ;
Morozas, J. A. ;
Sangster, T. C. ;
Landen, O. L. ;
Meyerhofer, D. D. .
PHYSICS OF PLASMAS, 2009, 16 (05)
[7]   Ab initio simulations of dense liquid deuterium:: Comparison with gas-gun shock-wave experiments -: art. no. 014101 [J].
Bonev, SA ;
Militzer, B ;
Galli, G .
PHYSICAL REVIEW B, 2004, 69 (01)
[8]   THERMAL CONDUCTION IN LASER FUSION [J].
BRYSK, H ;
CAMPBELL, PM ;
HAMMERLING, P .
PLASMA PHYSICS AND CONTROLLED FUSION, 1975, 17 (06) :473-484
[9]   Shock-induced transformation of liquid deuterium into a metallic fluid [J].
Celliers, PM ;
Collins, GW ;
Da Silva, LB ;
Gold, DM ;
Cauble, R ;
Wallace, RJ ;
Foord, ME ;
Hammel, BA .
PHYSICAL REVIEW LETTERS, 2000, 84 (24) :5564-5567
[10]   Progress on LMJ targets for ignition [J].
Cherfils-Clerouin, C. ;
Boniface, C. ;
Bonnefille, M. ;
Fremerye, P. ;
Galmiche, D. ;
Gauthier, P. ;
Giorla, J. ;
Lambert, F. ;
Laffite, S. ;
Liberatore, S. ;
Loiseau, P. ;
Malinie, G. ;
Masse, L. ;
Masson-Laborde, P. E. ;
Monteil, M. C. ;
Poggi, F. ;
Seytor, P. ;
Wagon, F. ;
Willien, J. L. .
SIXTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, PARTS 1-4, 2010, 244