EGCG targeting Notch to attenuate renal fibrosis via inhibition of TGFβ/Smad3 signaling pathway activation in streptozotocin-induced diabetic mice

被引:0
|
作者
Zhu, Qiang-Qiang [1 ,2 ]
Yang, Xiao-Ying [1 ,2 ]
Zhang, Xiao-Juan [1 ,2 ]
Yu, Cai-Jun [1 ,2 ]
Pang, Qian-Qian [1 ,2 ]
Huang, Ye-Wei [1 ,3 ]
Wang, Xuan-Jun [1 ,3 ,4 ]
Sheng, Jun [1 ,4 ]
机构
[1] Yunnan Agr Univ, Key Lab Pu Er Tea Sci, Minist Educ, Kunming 650201, Yunnan, Peoples R China
[2] Yunnan Agr Univ, Coll Food Sci & Technol, Kunming 650201, Yunnan, Peoples R China
[3] Yunnan Agr Univ, Coll Sci, Kunming 650201, Yunnan, Peoples R China
[4] State Key Lab Conservat & Utilizat Bioresources Y, Kunming 650201, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
TGF-BETA; KIDNEY FIBROSIS; MECHANISMS; INSIGHTS; MODEL; NEPHROPATHY; GALLATE; ROLES;
D O I
10.1039/d0fo01542c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Renal fibrosis is a characteristic of diabetic nephropathy, which is a serious complication of diabetes. It has been reported that (-)-epigallocatechin gallate (EGCG) attenuates renal fibrosis. However, the molecular mechanism of regulation by EGCG in this process remains unclear. Previous studies showed that abnormal activation of Notch signaling contributes to the development of renal fibrosis. Previous studies have demonstrated that EGCG attenuates Notch1 expression. In this study, we found that the levels of fibronectin and Notch1 expression were decreased in human embryonic kidney cells after treatment with EGCG. We also observed that the type II transforming growth factor beta receptor (TGF beta RII) and Smad3 pathway were inhibited in kidney cells by treatment with EGCG. In the diabetic kidney, we found that the activation of Notch signaling was attenuated by administration of EGCG. Moreover, TGF beta RII and Smad3 phosphorylation could be inhibited by treatment with EGCG in the kidney. These results indicated that EGCG may improve renal fibrosis by targeting Notch via inhibition of the TGF beta/Smad3 pathway in diabetic mice. Our findings provide insight into the therapeutic strategy for diabetes-induced renal fibrosis, and suggest EGCG to be a novel potential medicine for the treatment of chronic kidney disease in patients with diabetes.
引用
收藏
页码:9686 / 9695
页数:10
相关论文
共 50 条
  • [31] Paeonol alleviates CCl4-induced liver fibrosis through suppression of hepatic stellate cells activation via inhibiting the TGF-β/Smad3 signaling
    Wu, Shengwang
    Liu, Laicheng
    Yang, Sen
    Kuang, Ge
    Yin, Xinru
    Wang, Yuanyuan
    Xu, Fangzhi
    Xiong, Lingyi
    Zhang, Meixia
    Wan, Jingyuan
    Gong, Xia
    IMMUNOPHARMACOLOGY AND IMMUNOTOXICOLOGY, 2019, 41 (03) : 438 - 445
  • [32] Inhibition of HSP90 S-nitrosylation alleviates cardiac fibrosis via TGFβ/SMAD3 signalling pathway
    Zhang, Xiyue
    Zhang, Yihua
    Miao, Qing
    Shi, Zhiguang
    Hu, Lulu
    Liu, Shangmin
    Gao, Jie
    Zhao, Shuang
    Chen, Hongshan
    Huang, Zhengrong
    Han, Yi
    Ji, Yong
    Xie, Liping
    BRITISH JOURNAL OF PHARMACOLOGY, 2021, 178 (23) : 4608 - 4625
  • [33] Estrogen deficiency aggravates fluorine ion-induced renal fibrosis via the TGF-β1/Smad signaling pathway in rats
    Liu, Song
    Zhao, Jing
    Tian, Wei-shun
    Wang, Ji-cang
    Wang, Hong-wei
    Zhou, Bian-hua
    TOXICOLOGY LETTERS, 2022, 362 : 26 - 37
  • [34] Caffeic acid phenethyl ester attenuates liver fibrosis via inhibition of TGF-β1/Smad3 pathway and induction of autophagy pathway
    Yang, Ning
    Dang, Shuangsuo
    Shi, Juanjuan
    Wu, Fengping
    Li, Mei
    Zhang, Xin
    Li, Yaping
    Jia, Xiaoli
    Zhai, Song
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 486 (01) : 22 - 28
  • [35] Aprepitant exerts anti-fibrotic effect via inhibition of TGF-?/Smad3 pathway in bleomycin-induced pulmonary fibrosis in rats
    Mohamed, Mervat Z.
    Baky, Mohamed F. Abed El
    Ali, Merhan E.
    Hafez, Heba M.
    ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY, 2022, 95
  • [36] D-Carvone Attenuates CCl4-Induced Liver Fibrosis in Rats by Inhibiting Oxidative Stress and TGF-β 1/SMAD3 Signaling Pathway
    Ogaly, Hanan A.
    Aldulmani, Sharah A. A.
    Al-Zahrani, Fatimah A. M.
    Abd-Elsalam, Reham M.
    BIOLOGY-BASEL, 2022, 11 (05):
  • [37] Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-β/Smad signaling pathway
    Mu, Mao
    Zuo, Shi
    Wu, Rong-Min
    Deng, Kai-Sheng
    Lu, Shuang
    Zhu, Juan-Juan
    Zou, Gao-Liang
    Yang, Jing
    Cheng, Ming-Liang
    Zhao, Xue-Ke
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2018, 12 : 4107 - 4115
  • [38] Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice
    Zhu, Yanyan
    Zhu, Chenhui
    Yang, Haixia
    Deng, Jianjun
    Fan, Daidi
    PHARMACOLOGICAL RESEARCH, 2020, 155
  • [39] Cardiac Contractility Modulation Attenuate Myocardial Fibrosis by Inhibiting TGF-β1/Smad3 Signaling Pathway in a Rabbit Model of Chronic Heart Failure
    Zhang, Feifei
    Dang, Yi
    Li, Yingxiao
    Hao, Qingqing
    Li, Rong
    Qi, Xiaoyong
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2016, 39 (01) : 294 - 302
  • [40] Novel RAS Inhibitors Poricoic Acid ZG and Poricoic Acid ZH Attenuate Renal Fibrosis via a Wnt/β-Catenin Pathway and Targeted Phosphorylation of smad3 Signaling
    Wang, Ming
    Chen, Dan-Qian
    Chen, Lin
    Liu, Dan
    Zhao, Hui
    Zhang, Zhi-Hao
    Vaziri, Nosratola D.
    Guo, Yan
    Zhao, Ying-Yong
    Cao, Gang
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (08) : 1828 - 1842