Hermitian Dirac Hamiltonian in the time-dependent gravitational field

被引:24
|
作者
Leclerc, M [1 ]
机构
[1] Univ Athens, Sect Astrophys & Astron, Dept Phys, Athens, Greece
关键词
D O I
10.1088/0264-9381/23/12/001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is shown by a straightforward argument that the Hamiltonian generating the time evolution of the Dirac wavefunction in relativistic quantum mechanics is not Hermitian with respect to the covariantly defined inner product whenever the background metric is time dependent. An alternative, Hermitian, Hamiltonian is found and shown to be directly related to the canonical field Hamiltonian used in quantum field theory.
引用
收藏
页码:4013 / 4019
页数:7
相关论文
共 50 条
  • [1] Time-dependent constrained Hamiltonian systems and Dirac brackets
    deLeon, M
    Marrero, JC
    deDiego, DM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (21): : 6843 - 6859
  • [3] Time evolution of quantum systems with time-dependent Hamiltonian and the invariant Hermitian operator
    Lai, YZ
    Liang, JQ
    MullerKirsten, HJW
    Zhou, JG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (08): : 1773 - 1783
  • [4] SUPERCONDUCTING AND NORMAL METALS IN A TIME-DEPENDENT GRAVITATIONAL FIELD
    PAPINI, G
    LETTERE AL NUOVO CIMENTO, 1970, 4 (14): : 663 - &
  • [5] String pair production in a time-dependent gravitational field
    Tolley, AJ
    Wesley, DH
    PHYSICAL REVIEW D, 2005, 72 (12)
  • [6] Dirac equation from the Hamiltonian and the case with a gravitational field
    Arminjon, M
    FOUNDATIONS OF PHYSICS LETTERS, 2006, 19 (03) : 225 - 247
  • [7] Dirac's Formalism for Time-Dependent Hamiltonian Systems in the Extended Phase Space
    Garcia-Chung, Angel
    Gutierrez-Ruiz, Daniel
    David Vergara, J.
    UNIVERSE, 2021, 7 (04)
  • [8] A time-dependent pseudo-Hermitian Hamiltonian for a cavity mode with pure imaginary frequency
    Dourado, R. A.
    de Ponte, M. A.
    Moussa, M. H. Y.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 581
  • [9] QUANTUM-FIELD THEORY IN A TIME-DEPENDENT GRAVITATIONAL-FIELD
    ICHINOSE, I
    PHYSICAL REVIEW D, 1982, 25 (02): : 365 - 381
  • [10] Hamiltonian time-dependent mechanics
    Sardanashvily, G. A.
    Journal of Mathematical Physics, 39 (05):