Critical behavior of the random Potts chain

被引:11
作者
Carlon, E [1 ]
Chatelain, C [1 ]
Berche, B [1 ]
机构
[1] Univ Nancy 1, Phys Mat Lab, F-54506 Vandoeuvre Les Nancy, France
来源
PHYSICAL REVIEW B | 1999年 / 60卷 / 18期
关键词
D O I
10.1103/PhysRevB.60.12974
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the critical behavior of the random q-state Potts quantum chain by density-matrix renormalization techniques. Critical exponents are calculated by scaling analysis of finite lattice data of short chains (L less than or equal to 16) averaging over all possible realizations of disorder configurations chosen according to a binary distribution. Our numerical results show that the critical properties of the model are independent of q in agreement with a renormalization group analysis of Senthil and Majumdar [Phys. Rev. Lett. 76, 3001 (1996)]. We show how an accurate analysis of moments of the distribution of magnetizations allows a precise determination of critical exponents, circumventing some problems related to binary disorder. Multiscaling properties of the model and dynamical correlation functions are also investigated. [S0163-1829(99)13141-2].
引用
收藏
页码:12974 / 12981
页数:8
相关论文
共 37 条
[11]   RANDOM TRANSVERSE FIELD ISING SPIN CHAINS [J].
FISHER, DS .
PHYSICAL REVIEW LETTERS, 1992, 69 (03) :534-537
[12]   EFFECT OF RANDOM DEFECTS ON CRITICAL BEHAVIOR OF ISING MODELS [J].
HARRIS, AB .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1974, 7 (09) :1671-1692
[13]   FINITE-LATTICE EXTRAPOLATION ALGORITHMS [J].
HENKEL, M ;
SCHUTZ, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (11) :2617-2633
[14]  
Henkel M., 1992, International Journal of Modern Physics C (Physics and Computers), V3, P1011, DOI 10.1142/S012918319200066X
[15]   RANDOM-FIELD MECHANISM IN RANDOM-BOND MULTICRITICAL SYSTEMS [J].
HUI, K ;
BERKER, AN .
PHYSICAL REVIEW LETTERS, 1989, 62 (21) :2507-2510
[16]   Random transverse Ising spin chain and random walks [J].
Igloi, F ;
Rieger, H .
PHYSICAL REVIEW B, 1998, 57 (18) :11404-11420
[17]   Boundary and bulk phase transitions in the two-dimensional Q-state Potts model (Q>4) [J].
Iglói, F ;
Carlon, E .
PHYSICAL REVIEW B, 1999, 59 (05) :3783-3792
[18]   INFLUENCE OF QUENCHED IMPURITIES ON 1ST-ORDER PHASE-TRANSITIONS [J].
IMRY, Y ;
WORTIS, M .
PHYSICAL REVIEW B, 1979, 19 (07) :3580-3585
[19]   Quantum Ising model in a transverse random field: A density-matrix renormalization-group analysis [J].
Juozapavicius, A ;
Caprara, S ;
Rosengren, A .
PHYSICAL REVIEW B, 1997, 56 (17) :11097-11101
[20]   INTRODUCTION TO LATTICE GAUGE-THEORY AND SPIN SYSTEMS [J].
KOGUT, JB .
REVIEWS OF MODERN PHYSICS, 1979, 51 (04) :659-713