Divisibility of zeta functions of curves in a covering

被引:10
作者
Aubry, Y [1 ]
Perret, M
机构
[1] Univ Caen, CNRS, UMR 6139, Lab Math Nicolas Oresme, F-14032 Caen, France
[2] Ecole Normale Super Lyon, Unite Math Pures & Appl, F-69636 Lyon 7, France
[3] CNRS, Inst Math Luminy, Marseille, France
关键词
D O I
10.1007/s00013-003-4606-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove, as an analogy of a conjecture of Artin, that if Y --> X is a finite flat morphism between two singular reduced absolutely irreducible projective algebraic curves defined over a finite field, then the numerator of the zeta function of X divides that of Y in Z[T]. Then, we give some interpretations of this result in terms of semi-abelian varieties.
引用
收藏
页码:205 / 213
页数:9
相关论文
共 8 条
[1]   Coverings of singular curves over finite fields [J].
Aubry, Y ;
Perret, M .
MANUSCRIPTA MATHEMATICA, 1995, 88 (04) :467-478
[2]  
Aubry Y, 1996, ARITHMETIC, GEOMETRY AND CODING THEORY, P1
[3]   Weil bounds for singular curves [J].
Bach, E .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1996, 7 (04) :289-298
[4]  
DELIGNE P, 1980, PUBL MATH-PARIS, V52, P137, DOI [10.1007/BF02684780. MR0601520, DOI 10.1007/BF02684780.MR0601520]
[5]  
Deligne P., 1974, PUBL MATH IHES, V44, P5
[6]   THE NUMBER OF POINTS ON A SINGULAR CURVE OVER A FINITE-FIELD [J].
LEEP, DB ;
YEOMANS, CC .
ARCHIV DER MATHEMATIK, 1994, 63 (05) :420-426
[7]  
Tate J., 1966, INVENT MATH, V2, P134, DOI DOI 10.1007/BF01404549
[8]  
[No title captured]