Numerical implementation of static Field Dislocation Mechanics theory for periodic media

被引:41
作者
Brenner, R. [1 ]
Beaudoin, A. J. [2 ]
Suquet, P. [3 ]
Acharya, A. [4 ]
机构
[1] Univ Paris 06, Sorbonne Univ, CNRS, Inst Jean le Rond dAlembert,UMR 7190, F-75005 Paris, France
[2] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[3] Aix Marseille Univ, CNRS, UPR 7051, Lab Mecan & Acoust,Cent Marseille, F-13402 Marseille 20, France
[4] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA
关键词
Field Dislocation Mechanics; internal stresses; periodic microstructure; Fourier transform; infinite bicrystal; zero-stress dislocation distributions; MICROSTRUCTURE; BICRYSTALS; COMPOSITES; BEHAVIOR; MODEL;
D O I
10.1080/14786435.2014.896081
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates the implementation of Field Dislocation Mechanics (FDM) theory for media with a periodic microstructure (i.e. the Nye dislocation tensor and the elastic moduli tensor are considered as spatially periodic continuous fields). In this context, the uniqueness of the stress and elastic distortion fields is established. This allows to propose an efficient numerical scheme based on Fourier transform to compute the internal stress field, for a given spatial distribution of dislocations and applied macroscopic stress. This numerical implementation is assessed by comparison with analytical solutions for homogeneous as well as heterogeneous elastic media. A particular insight is given to the critical case of stress-free dislocation microstructures which represent equilibrium solutions of the FDM theory.
引用
收藏
页码:1764 / 1787
页数:24
相关论文
共 32 条
[2]   A model of crystal plasticity based on the theory of continuously distributed dislocations [J].
Acharya, A .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2001, 49 (04) :761-784
[3]   Prediction of the overall behavior of a 3D microstructure of austenitic steel by using FFT numerical scheme [J].
Belkhabbaz, A. ;
Brenner, R. ;
Rupin, N. ;
Bacroix, B. ;
Fonseca, J. .
11TH INTERNATIONAL CONFERENCE ON THE MECHANICAL BEHAVIOR OF MATERIALS (ICM11), 2011, 10 :1883-1888
[4]  
Bourel C., 2010, ETUDE MATH NUMERIQUE
[5]   Elastic anisotropy and yield surface estimates of polycrystals [J].
Brenner, R. ;
Lebensohn, R. A. ;
Castelnau, O. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (16) :3018-3026
[6]  
Fressengeas C., UNPUB
[7]   COMPATIBILITY STRESSES IN DEFORMED BICRYSTALS [J].
GEMPERLOVA, J ;
PAIDAR, V ;
KROUPA, F .
CZECHOSLOVAK JOURNAL OF PHYSICS, 1989, 39 (04) :427-446
[8]  
Griffith VI AA, 1921, Royal Soc., V221, P163, DOI [10.1098/rsta.1921.0006, DOI 10.1098/RSTA.1921.0006]
[9]   AN EQUILIBRIUM-THEORY OF DISLOCATION CONTINUA [J].
HEAD, AK ;
HOWISON, SD ;
OCKENDON, JR ;
TIGHE, SP .
SIAM REVIEW, 1993, 35 (04) :580-609
[10]  
Hill R., 1972, Continuum mechanics and related problems of analysis-N. I. Muskhelishvili 80th Anniversary Volume, P597