A LOCATION-SENSITIVE LOCAL PROTOTYPE NETWORK FOR FEW-SHOT MEDICAL IMAGE SEGMENTATION

被引:34
作者
Yu, Qinji [1 ]
Dang, Kang [2 ]
Tajbakhsh, Nima [2 ]
Terzopoulos, Demetri [2 ,3 ]
Ding, Xiaowei [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] VoxelCloud Inc, Los Angeles, CA USA
[3] Univ Calif Los Angeles, Los Angeles, CA USA
来源
2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2021年
关键词
medical image segmentation; few-shot segmentation; prototype networks; spatial layout priors;
D O I
10.1109/ISBI48211.2021.9434008
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Despite the tremendous success of deep neural networks in medical image segmentation, they typically require a large amount of costly, expert-level annotated data. Few-shot segmentation approaches address this issue by learning to transfer knowledge from limited quantities of labeled examples. Incorporating appropriate prior knowledge is critical in designing high-performance few-shot segmentation algorithms. Since strong spatial priors exist in many medical imaging modalities, we propose a prototype-based method-namely, the location-sensitive local prototype network-that leverages spatial priors to perform few-shot medical image segmentation. Our approach divides the difficult problem of segmenting the entire image with global prototypes into easily solvable sub-problems of local region segmentation with local prototypes. For organ segmentation experiments on the VISCERAL CT image dataset, our method outperforms the state-of-the-art approaches by 10% in the mean Dice coefficient. Extensive ablation studies demonstrate the substantial benefits of incorporating spatial information and confirm the effectiveness of our approach.
引用
收藏
页码:262 / 266
页数:5
相关论文
共 20 条
[1]   Large-Scale Machine Learning with Stochastic Gradient Descent [J].
Bottou, Leon .
COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, :177-186
[2]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[3]   Learning location constrained pixel classifiers for image parsing [J].
Dang, Kang ;
Yuan, Junsong .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 49 :1-13
[4]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[5]  
Dong N., 2018, BMVC, P1
[6]  
Haghighi Fatemeh, 2020, Med Image Comput Comput Assist Interv, V12261, P137, DOI 10.1007/978-3-030-59710-8_14
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]  
Isensee F, 2018, nnu-net: Self-adapting framework for u-net-based medical image segmentation
[9]   Cloud-Based Evaluation of Anatomical Structure Segmentation and Landmark Detection Algorithms: VISCERAL Anatomy Benchmarks [J].
Jimenez-del-Toro, Oscar ;
Muller, Henning ;
Krenn, Markus ;
Gruenberg, Katharina ;
Taha, Abdel Aziz ;
Winterstein, Marianne ;
Eggel, Ivan ;
Foncubierta-Rodriguez, Antonio ;
Goksel, Orcun ;
Jakab, Andres ;
Kontokotsios, Georgios ;
Langs, Georg ;
Menze, Bjoern H. ;
Fernandez, Tomas Salas ;
Schaer, Roger ;
Walleyo, Anna ;
Weber, Marc-Andre ;
Cid, Yashin Dicente ;
Gass, Tobias ;
Heinrich, Mattias ;
Jia, Fucang ;
Kahl, Fredrik ;
Kechichian, Razmig ;
Mai, Dominic ;
Spanier, Assaf B. ;
Vincent, Graham ;
Wang, Chunliang ;
Wyeth, Daniel ;
Hanbury, Allan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (11) :2459-2475
[10]  
Liu J., 2020, EUR C COMP VIS