S4ND: Single-Shot Single-Scale Lung Nodule Detection

被引:83
作者
Khosravan, Naji [1 ]
Bagci, Ulas [1 ]
机构
[1] Univ Cent Florida, Sch Comp Sci, CRCV, Orlando, FL 32816 USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II | 2018年 / 11071卷
关键词
Object detection; Deep learning; Lung nodule detection; Dense CNN; Tiny object detection; COMPUTED-TOMOGRAPHY IMAGES; VALIDATION;
D O I
10.1007/978-3-030-00934-2_88
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The most recent lung nodule detection studies rely on computationally expensive multi-stage frameworks to detect nodules from CT scans. To address this computational challenge and provide better performance, in this paper we propose S4ND, a new deep learning based method for lung nodule detection. Our approach uses a single feed forward pass of a single network for detection. The whole detection pipeline is designed as a single 3D Convolutional Neural Network (CNN) with dense connections, trained in an end-to-end manner. S4ND does not require any further post-processing or user guidance to refine detection results. Experimentally, we compared our network with the current stateof- the-art object detection network (SSD) in computer vision as well as the state-of-the-art published method for lung nodule detection (3D DCNN). We used publicly available 888 CT scans from LUNA challenge dataset and showed that the proposed method outperforms the current literature both in terms of efficiency and accuracy by achieving an average FROC-score of 0.897. We also provide an in-depth analysis of our proposed network to shed light on the unclear paradigms of tiny object detection.
引用
收藏
页码:794 / 802
页数:9
相关论文
共 11 条
[1]  
[Anonymous], 2016, ARXIV PREPRINT ARXIV
[2]   Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection [J].
Dou, Qi ;
Chen, Hao ;
Yu, Lequan ;
Qin, Jing ;
Heng, Pheng-Ann .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (07) :1558-1567
[3]  
Golan R, 2016, IEEE IJCNN, P243, DOI 10.1109/IJCNN.2016.7727205
[4]  
Huang XJ, 2017, I S BIOMED IMAGING, P379, DOI 10.1109/ISBI.2017.7950542
[5]  
Jia Ding, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10435, P559, DOI 10.1007/978-3-319-66179-7_64
[6]   An Automatic Computerized Model for Cancerous Lung Nodule Detection from Computed Tomography Images with Reduced False Positives [J].
Krishnamurthy, Senthilkumar ;
Narasimhan, Ganesh ;
Rengasamy, Umamaheswari .
RECENT TRENDS IN IMAGE PROCESSING AND PATTERN RECOGNITION (RTIP2R 2016), 2017, 709 :343-355
[7]  
Kundel H., 2008, J. ICRU, V79, P1
[8]   SSD: Single Shot MultiBox Detector [J].
Liu, Wei ;
Anguelov, Dragomir ;
Erhan, Dumitru ;
Szegedy, Christian ;
Reed, Scott ;
Fu, Cheng-Yang ;
Berg, Alexander C. .
COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 :21-37
[9]   Large scale validation of the M5L lung CAD on heterogeneous CT datasets [J].
Lopez Torres, E. ;
Fiorina, E. ;
Pennazio, F. ;
Peroni, C. ;
Saletta, M. ;
Camarlinghi, N. ;
Fantacci, M. E. ;
Cerello, P. .
MEDICAL PHYSICS, 2015, 42 (04) :1477-1489
[10]   Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge [J].
Setio, Arnaud Arindra Adiyoso ;
Traverso, Alberto ;
de Bel, Thomas ;
Berens, Moira S. N. ;
van den Bogaard, Cas ;
Cerello, Piergiorgio ;
Chen, Hao ;
Dou, Qi ;
Evelina Fantacci, Maria ;
Geurts, Bram ;
van der Gugten, Robbert ;
Heng, Pheng Ann ;
Jansen, Bart ;
de Kaste, Michael M. J. ;
Kotov, Valentin ;
Lin, Jack Yu-Hung ;
Manders, Jeroen T. M. C. ;
Sonora-Mengana, Alexander ;
Carlos Garcia-Naranjo, Juan ;
Papavasileiou, Evgenia ;
Prokop, Mathias ;
Saletta, Marco ;
Schaefer-Prokop, Cornelia M. ;
Scholten, Ernst T. ;
Scholten, Luuk ;
Snoeren, Miranda M. ;
Lopez Torres, Ernesto ;
Vandemeulebroucke, Jef ;
Walasek, Nicole ;
Zuidhof, Guido C. A. ;
van Ginneken, Bram ;
Jacobs, Colin .
MEDICAL IMAGE ANALYSIS, 2017, 42 :1-13