Blowing-up solutions of the time-fractional dispersive equations

被引:31
作者
Alsaedi, Ahmed [1 ]
Ahmad, Bashir [1 ]
Kirane, Mokhtar [1 ,2 ]
Torebek, Berikbol T. [3 ,4 ,5 ]
机构
[1] King Abdulaziz Univ, Dept Math, NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[2] Khalifa Univ Sci & Technol, Coll Art & Sci, Dept Math & Stat, Abu Dhabi, U Arab Emirates
[3] Al Farabi Kazakh Natl Univ, AL Farabi Ave 71, Alma Ata 050040, Kazakhstan
[4] Inst Math & Math Modeling, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
[5] Univ Ghent, Dept Math Anal Log & Discrete Math, Krijgslaan 281, Ghent, Belgium
关键词
Caputo derivative; Burgers equation; Korteweg-de Vries equation; Benjamin-Bona-Mahony equation; Camassa-Holm equation; Rosenau equation; Ostrovsky equation; blow-up; KORTEWEG-DE-VRIES; FINITE-DIFFERENCE SCHEME; BONA-MAHONY-BURGERS; GLOBAL UNSOLVABILITY; WAVES; DIFFUSION; DYNAMICS; LONG; KDV; STABILITY;
D O I
10.1515/anona-2020-0153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of initial-boundary value problems for time-fractional analogues of Korteweg-de Vries, Benjamin-Bona-Mahony, Burgers, Rosenau, Camassa-Holm, Degasperis-Procesi, Ostrovsky and time-fractional modified Korteweg-de Vries-Burgers equations on a bounded domain. Sufficient conditions for the blowing-up of solutions in finite time of aforementioned equations are presented. We also discuss the maximum principle and influence of gradient non-linearity on the global solvability of initial-boundary value problems for the time-fractional Burgers equation. The main tool of our study is the Pohozhaev nonlinear capacity method. We also provide some illustrative examples.
引用
收藏
页码:952 / 971
页数:20
相关论文
共 61 条
[1]   On a time fractional reaction diffusion equation [J].
Ahmad, B. ;
Alhothuali, M. S. ;
Alsulami, H. H. ;
Kirane, M. ;
Timoshin, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :199-204
[2]  
Alsaedi A., 2019, GLOBAL EXISTENCE BLO, P1
[3]   Blow-up of smooth solutions of the time-fractional Burgers equation [J].
Alsaedi, Ahmed ;
Kirane, Mokhtar ;
Torebek, Berikbol T. .
QUAESTIONES MATHEMATICAE, 2020, 43 (02) :185-192
[4]   A SURVEY OF USEFUL INEQUALITIES IN FRACTIONAL CALCULUS [J].
Alsaedi, Ahmed ;
Ahmad, Bashir ;
Kirane, Mokhtar .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (03) :574-594
[5]   Blowing-up solutions for a nonlinear time-fractional system [J].
Alsaedi, Ahmed ;
Ahmad, Bashir ;
Kirane, Mukhtar Bin Muhammad ;
Al Musalhi, Fatma S. K. ;
Alzahrani, Faris .
BULLETIN OF MATHEMATICAL SCIENCES, 2017, 7 (02) :201-210
[6]  
Bateman H., 1915, MON WEATHER REV, V43, P163, DOI [DOI 10.1175/1520-0493(1915)432.0.CO
[7]  
2, 10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO
[8]  
2, DOI 10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO
[9]  
2]
[10]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+