RGB picture vegetation indexes for High-Throughput Phenotyping Platforms (HTPPs)

被引:20
|
作者
Kefauver, Shawn C. [1 ]
El-Haddad, George
Vergara-Diaz, Omar [1 ]
Luis Arausa, Jose [1 ]
机构
[1] Univ Barcelona, Fac Biol, Dept Plant Biol, Unit Plant Physiol, E-08028 Barcelona, Spain
关键词
wheat; maize; phenotyping; remote sensing; RGB; HTTP; UAV; RPAS; CONVENTIONAL DIGITAL CAMERAS; GRAIN-YIELD; WHEAT; ENVIRONMENTS; PLANTS; RUST;
D O I
10.1117/12.2195235
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Extreme and abnormal weather events, as well as the more gradual meteorological changes associated with climate change, often coincide with not only increased abiotic risks (such as increases in temperature and decreases in precipitation), but also increased biotic risks due to environmental conditions that favor the rapid spread of crop pests and diseases. Durum wheat is by extension the most cultivated cereal in the south and east margins of the Mediterranean Basin. It is of strategic importance for Mediterranean agriculture to develop new varieties of durum wheat with greater production potential, better adaptation to increasingly adverse environmental conditions (drought) and better grain quality. Similarly, maize is the top staple crop for low-income populations in Sub-Saharan Africa and is currently suffering from the appearance of new diseases, which, together with increased abiotic stresses from climate change, are challenging the very sustainability of African societies. Current constraints in field phenotyping remain a major bottleneck for future breeding advances, but RGB-based High-Throughput Phenotyping Platforms (HTPPs) have shown promise for rapidly developing both disease-resistant and weather-resilient crops. RGB cameras have proven cost-effective in studies assessing the effect of abiotic stresses, but have yet to be fully exploited to phenotype disease resistance. Recent analyses of durum wheat in Spain have shown RGB vegetation indexes to outperform multispectral indexes such as NDVI consistently in disease and yield prediction. Towards HTTP development for breeding maize disease resistance, some of the same RGB picture vegetation indexes outperformed NDVI (Normalized Difference Vegetation Index), with R-2 values up to 0.65, compared to 0.56 for NDVI.. Specifically, hue, a*, u*, and Green Area (GA), as produced by FIJI and BreedPix open source software, performed similar to or better than NDVI in predicting yield and disease severity conditions for wheat and maize. Results using UAVs (Unmanned Aerial Vehicles) have produced similar results demonstrating the robust strengths, and limitations, of the more cost-effective RGB picture indexes.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Imaging for High-Throughput Phenotyping in Energy Sorghum
    Batz, Jose
    Mendez-Dorado, Mario A.
    Thomasson, J. Alex
    JOURNAL OF IMAGING, 2016, 2 (01)
  • [32] Initial steps for high-throughput phenotyping in vineyards
    Herzog, K.
    Roscher, R.
    Wieland, M.
    Kicherer, A.
    Laebe, T.
    Foerstner, W.
    Kuhlmann, H.
    Toepfer, R.
    VITIS, 2014, 53 (01) : 1 - 8
  • [33] Utilization of Spectral Indices for High-Throughput Phenotyping
    Tayade, Rupesh
    Yoon, Jungbeom
    Lay, Liny
    Khan, Abdul Latif
    Yoon, Youngnam
    Kim, Yoonha
    PLANTS-BASEL, 2022, 11 (13):
  • [34] High-throughput phenotyping for trait detection in vineyards
    Kicherer, Anna
    Herzog, Katja
    Toepfer, Reinhard
    38TH WORLD CONGRESS OF VINE AND WINE (PART 1), 2015, 5
  • [35] Radiomics: a primer on high-throughput image phenotyping
    Lafata, Kyle J.
    Wang, Yuqi
    Konkel, Brandon
    Yin, Fang-Fang
    Bashir, Mustafa R.
    ABDOMINAL RADIOLOGY, 2022, 47 (09) : 2986 - 3002
  • [36] High-throughput plant phenotyping: a role for metabolomics?
    Hall, Robert D.
    D'Auria, John C.
    Ferreira, Antonio C. Silva
    Gibon, Yves
    Kruszka, Dariusz
    Mishra, Puneet
    van de Zedde, Rick
    TRENDS IN PLANT SCIENCE, 2022, 27 (06) : 549 - 563
  • [37] Plant chip for high-throughput phenotyping of Arabidopsis
    Jiang, Huawei
    Xu, Zhen
    Aluru, Maneesha R.
    Dong, Liang
    LAB ON A CHIP, 2014, 14 (07) : 1281 - 1293
  • [38] High-throughput phenotyping technology for maize roots
    Grift, T. E.
    Novais, J.
    Bohn, M.
    BIOSYSTEMS ENGINEERING, 2011, 110 (01) : 40 - 48
  • [39] High-throughput physical phenotyping of cell differentiation
    Jonathan Lin
    Donghyuk Kim
    Henry T. Tse
    Peter Tseng
    Lillian Peng
    Manjima Dhar
    Saravanan Karumbayaram
    Dino Di Carlo
    Microsystems & Nanoengineering, 3
  • [40] High-throughput mechanical phenotyping for diagnostic applications
    Prinz, Christelle
    Selhuber-Unkel, Christine
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2023, 52 (SUPPL 1): : S46 - S46