Customizing poly(lactic-co-glycolic acid) particles for biomedical applications

被引:229
作者
Swider, Edyta [1 ]
Koshkina, Olga [1 ]
Tel, Jurjen [1 ,4 ]
Cruz, Luis J. [2 ]
de Vries, I. Jolanda M. [1 ,3 ]
Srinivas, Mangala [1 ]
机构
[1] Radboud Inst Mol Life Sci, Dept Tumor Immunol, Nijmegen, Netherlands
[2] Leiden Univ, Med Ctr, Dept Radiol, Leiden, Netherlands
[3] Radboud, Dept Med Oncol, Nijmegen, Netherlands
[4] Eindhoven Univ Technol, Lab Immunoengn, Dept Biomed Engn, Eindhoven, Netherlands
基金
欧洲研究理事会;
关键词
Poly(lactic-co-glycolic acid); Particles; Drug delivery; Theranostics; Imaging; PLGA-BASED NANOPARTICLES; CO-GLYCOLIC ACID; DRUG-DELIVERY; DENDRITIC CELLS; BIODEGRADABLE NANOPARTICLES; POLYMERIC NANOPARTICLES; PEG NANOPARTICLES; IN-VITRO; POLY(LACTIDE-CO-GLYCOLIDE); MICROPARTICLES;
D O I
10.1016/j.actbio.2018.04.006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Nano- and microparticles have increasingly widespread applications in nanomedicine, ranging from drug delivery to imaging. Poly(lactic-co-glycolic acid) (PLGA) particles are the most widely-applied type of particles due to their biocompatibility and biodegradability. Here, we discuss the preparation of PLGA particles, and various modifications to tailor particles for applications in biological systems. We highlight new preparation approaches, including microfluidics and PRINT method, and modifications of PLGA particles resulting in novel or responsive properties, such as Janus or upconversion particles. Finally, we describe how the preparation methods can- and should-be adapted to tailor the properties of particles for the desired biomedical application. Our aim is to enable researchers who work with PLGA particles to better appreciate the effects of the selected preparation procedure on the final properties of the particles and its biological implications. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd.
引用
收藏
页码:38 / 51
页数:14
相关论文
共 143 条
  • [1] PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect
    Acharya, Sarbari
    Sahoo, Sanjeeb K.
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2011, 63 (03) : 170 - 183
  • [2] Membrane-Integrated Glass Capillary Device for Preparing Small-Sized Water-in-Oil-in-Water Emulsion Droplets
    Akamatsu, Kazuki
    Kanasugi, Shosuke
    Nakao, Shin-ichi
    Weitz, David A.
    [J]. LANGMUIR, 2015, 31 (25) : 7166 - 7172
  • [3] PREPARATION OF AQUEOUS POLYMERIC NANODISPERSIONS BY A REVERSIBLE SALTING-OUT PROCESS - INFLUENCE OF PROCESS PARAMETERS ON PARTICLE-SIZE
    ALLEMANN, E
    GURNY, R
    DOELKER, E
    [J]. INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1992, 87 (1-3) : 247 - 253
  • [5] Alvarez-Lorenzo Carmen, 2010, Front Biosci (Elite Ed), V2, P424, DOI 10.2741/e102
  • [6] In Vitro-In Vivo Correlations of Scalable PLGA-Risperidone Implants for the Treatment of Schizophrenia
    Amann, Laura C.
    Gandal, Michael J.
    Lin, Robert
    Liang, Yuling
    Siegel, Steven J.
    [J]. PHARMACEUTICAL RESEARCH, 2010, 27 (08) : 1730 - 1737
  • [7] Nanoparticles in the clinic
    Anselmo, Aaron C.
    Mitragotri, Samir
    [J]. BIOENGINEERING & TRANSLATIONAL MEDICINE, 2016, 1 (01) : 10 - 29
  • [8] Synthesis and characterization of PLGA nanoparticles
    Astete, Carlos E.
    Sabliov, Cristina M.
    [J]. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2006, 17 (03) : 247 - 289
  • [9] Microfluidics-Nano-Integration for Synthesis and Sensing
    Badilescu, Simona
    Packirisamy, Muthukumaran
    [J]. POLYMERS, 2012, 4 (02): : 1278 - 1310
  • [10] Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method
    Barichello, JM
    Morishita, M
    Takayama, K
    Nagai, T
    [J]. DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 1999, 25 (04) : 471 - 476