Complex imaging of phase domains by deep neural networks

被引:37
作者
Wu, Longlong [1 ,2 ]
Juhas, Pavol [1 ]
Yoo, Shinjae [1 ]
Robinson, Ian [2 ,3 ]
机构
[1] Brookhaven Natl Lab, Computat Sci Initiat, Upton, NY 11973 USA
[2] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA
[3] UCL, London Ctr Nanotechnol, London WC1E 6BT, England
来源
IUCRJ | 2021年 / 8卷
基金
英国工程与自然科学研究理事会;
关键词
machine learning; Bragg coherent X-ray diffraction; phase retrieval; single-particle imaging; deep neural networks; X-RAY MICROSCOPY; STRAIN; SCATTERING; RETRIEVAL; ALGORITHM;
D O I
10.1107/S2052252520013780
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The reconstruction of a single-particle image from the modulus of its Fourier transform, by phase-retrieval methods, has been extensively applied in X-ray structural science. Particularly for strong-phase objects, such as the phase domains found inside crystals by Bragg coherent diffraction imaging (BCDI), conventional iteration methods are time consuming and sensitive to their initial guess because of their iterative nature. Here, a deep-neural-network model is presented which gives a fast and accurate estimate of the complex single-particle image in the form of a universal approximator learned from synthetic data. A way to combine the deep-neural-network model with conventional iterative methods is then presented to refine the accuracy of the reconstructed results from the proposed deep-neural-network model. Improved convergence is also demonstrated with experimental BCDI data.
引用
收藏
页码:12 / 21
页数:10
相关论文
共 42 条
  • [1] [Anonymous], 1970, The Mathematical Gazette, DOI 10.2307/3613154
  • [2] BATES RHT, 1982, OPTIK, V61, P247
  • [3] Soft X-ray microscopy at a spatial resolution better than 15nm
    Chao, WL
    Harteneck, BD
    Liddle, JA
    Anderson, EH
    Attwood, DT
    [J]. NATURE, 2005, 435 (7046) : 1210 - 1213
  • [4] Femtosecond diffractive imaging with a soft-X-ray free-electron laser
    Chapman, Henry N.
    Barty, Anton
    Bogan, Michael J.
    Boutet, Sebastien
    Frank, Matthias
    Hau-Riege, Stefan P.
    Marchesini, Stefano
    Woods, Bruce W.
    Bajt, Sasa
    Benner, Henry
    London, Richard A.
    Ploenjes, Elke
    Kuhlmann, Marion
    Treusch, Rolf
    Duesterer, Stefan
    Tschentscher, Thomas
    Schneider, Jochen R.
    Spiller, Eberhard
    Moeller, Thomas
    Bostedt, Christoph
    Hoener, Matthias
    Shapiro, David A.
    Hodgson, Keith O.
    Van der Spoel, David
    Burmeister, Florian
    Bergh, Magnus
    Caleman, Carl
    Huldt, Goesta
    Seibert, M. Marvin
    Maia, Filipe R. N. C.
    Lee, Richard W.
    Szoeke, Abraham
    Timneanu, Nicusor
    Hajdu, Janos
    [J]. NATURE PHYSICS, 2006, 2 (12) : 839 - 843
  • [5] Real-time coherent diffraction inversion using deep generative networks
    Cherukara, Mathew J.
    Nashed, Youssef S. G.
    Harder, Ross J.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [6] Ultrafast Three-Dimensional Imaging of Lattice Dynamics in Individual Gold Nanocrystals
    Clark, J. N.
    Beitra, L.
    Xiong, G.
    Higginbotham, A.
    Fritz, D. M.
    Lemke, H. T.
    Zhu, D.
    Chollet, M.
    Williams, G. J.
    Messerschmidt, M.
    Abbey, B.
    Harder, R. J.
    Korsunsky, A. M.
    Wark, J. S.
    Robinson, I. K.
    [J]. SCIENCE, 2013, 341 (6141) : 56 - 59
  • [7] Phase retrieval by iterated projections
    Elser, V
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2003, 20 (01): : 40 - 55
  • [8] RECONSTRUCTION OF AN OBJECT FROM MODULUS OF ITS FOURIER-TRANSFORM
    FIENUP, JR
    [J]. OPTICS LETTERS, 1978, 3 (01) : 27 - 29
  • [9] PHASE RETRIEVAL ALGORITHMS - A COMPARISON
    FIENUP, JR
    [J]. APPLIED OPTICS, 1982, 21 (15): : 2758 - 2769
  • [10] MONTE-CARLO CALCULATION FOR ELECTROMAGNETIC-WAVE SCATTERING FROM RANDOM ROUGH SURFACES
    GARCIA, N
    STOLL, E
    [J]. PHYSICAL REVIEW LETTERS, 1984, 52 (20) : 1798 - 1801