Least squares Hermitian problem of a kind of quaternion tensor equation

被引:2
作者
Jiang, Hua [1 ]
Yuan, Shi-Fang [1 ]
Cao, Yu-Zhe [1 ]
机构
[1] Wuyi Univ, Sch Math & Computat Sci, Jiangmen 529020, Peoples R China
关键词
Einstein product; Hermitian quaternion tensor; least squares solution; Moore-Penrose generalized inverse; tensor equation; MATRIX; AXB; INVERSES; SYSTEM; CXD;
D O I
10.1002/mma.8268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Yuan and Liao [S.F. Yuan, A.P. Liao, Least squares Hermitian solution of the complex matrix equation AXB+CXD=E$$ AXB+ CXD=E $$ with the least norm. J. Frankl. Inst. 351 (2014), 4978-4997] gave a new product for complex matrices and vectors and obtained the least squares Hermitian solution with the least norm of complex matrix equation AXB+CXD=E$$ AXB+ CXD=E $$. In this paper, we generalize the product of complex matrices and vectors to quaternion tensors and vectors and consider the least squares Hermitian problem of quaternion tensor equation A*NX=B$$ \mathcal{A}{\ast}_N\mathcal{X}=\mathcal{B} $$, where the symbol *N$$ {\ast}_N $$ is the Einstein product of two tensors. Our main work is to derive the explicit expression of least squares Hermitian solution with the least norm and numerical algorithm to obtain the solution. We also provide numerical examples to justify the feasibility of our algorithm.
引用
收藏
页码:8948 / 8963
页数:16
相关论文
共 28 条
[1]   An efficient iterative algorithm for quaternionic least-squares problems over the generalized.-( anti-) bi-Hermitianmatrices [J].
Ahmadi-Asl, Salman ;
Beik, Fatemeh Panjeh Ali .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (09) :1743-1769
[2]   Iterative algorithms for least-squares solutions of a quaternion matrix equation [J].
Ahmadi-Asl, Salman ;
Beik, Fatemeh Panjeh Ali .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 53 (1-2) :95-127
[3]  
[Anonymous], 2017, arXiv preprint arXiv:1711.10678
[4]   Further results on generalized inverses of tensors via the Einstein product [J].
Behera, Ratikanta ;
Mishra, Debasisha .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (08) :1662-1682
[5]  
Ben-Israel A., 2003, Generalized Inverses: Theory and Applications, V15, DOI DOI 10.1007/B97366
[6]   SOLVING MULTILINEAR SYSTEMS VIA TENSOR INVERSION [J].
Brazell, M. ;
Li, N. ;
Navasca, C. ;
Tamon, C. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) :542-570
[7]  
Einstein A., 2007, The Collected Papers of Albert Einstein, V6, P146
[8]   Conjugate gradient-like methods for solving general tensor equation with Einstein product [J].
Hajarian, Masoud .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2020, 357 (07) :4272-4285
[9]   A simultaneous decomposition for three quaternion tensors with applications in color video signal processing [J].
He, Zhuo-Heng ;
Chen, Chen ;
Wang, Xiang-Xiang .
ANALYSIS AND APPLICATIONS, 2021, 19 (03) :529-549
[10]   A system of quaternary coupled Sylvester-type real quaternion matrix equations [J].
He, Zhuo-Heng ;
Wang, Qing-Wen ;
Zhang, Yang .
AUTOMATICA, 2018, 87 :25-31