Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators

被引:36
作者
Della Pietra, Francesco [1 ]
Gavitone, Nunzia [2 ]
机构
[1] Univ Molise, Dipartimento Biosci & Terr, Div Fis Informat & Matemat, I-86039 Termoli, CB, Italy
[2] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
Eigenvalue problems; torsional rigidity; anisotropic operators; stability estimates; POLYA-SZEGO INEQUALITY; CONVEX SYMMETRIZATION; WULFF THEOREM; P-LAPLACIAN; QUESTIONS;
D O I
10.1002/mana.201200296
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a sharp upper bound for the first Dirichlet eigenvalue of a class of nonlinear elliptic operators which includes the operator Delta(p)u = Sigma i partial derivative/partial derivative x(i) (vertical bar Delta u vertical bar(p-2) partial derivative u/partial derivative x(i)), that is the p-Laplacian, and (Delta) over tilde (p)u = Sigma i partial derivative/partial derivative x(i) (vertical bar partial derivative u/partial derivative x(i)vertical bar(p-2) partial derivative u/partial derivative x(i)), namely the pseudo-p-Laplacian. Moreover we prove a stability result by means of a suitable isoperimetric deficit. Finally, we give a sharp lower bound for the anisotropic p-torsional rigidity. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:194 / 209
页数:16
相关论文
共 32 条
[11]  
Crasta G., 2001, REND I MAT U TRIESTE, V33, P313
[12]   The distance function from the boundary in a Minkowski space [J].
Crasta, Graziano ;
Malusa, Annalisa .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (12) :5725-5759
[13]  
DACOROGNA B, 1992, J MATH PURE APPL, V71, P97
[14]  
del Pino M., 1987, THESIS
[15]   Stability results for some fully nonlinear eigenvalue estimates [J].
Della Pietra, Francesco ;
Gavitone, Nunzia .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (05)
[16]   Upper bounds for the eigenvalues of Hessian equations [J].
Della Pietra, Francesco ;
Gavitone, Nunzia .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (03) :923-938
[17]   Anisotropic elliptic equations with general growth in the gradient and Hardy-type potentials [J].
Della Pietra, Francesco ;
Gavitone, Nunzia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) :3788-3810
[18]  
Della Pietra F, 2013, J CONVEX ANAL, V20, P157
[19]   Anisotropic elliptic problems involving Hardy-type potentials [J].
Della Pietra, Francesco ;
Gavitone, Nunzia .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (02) :800-813
[20]  
Della Pietra F, 2012, ADV NONLINEAR STUD, V12, P219