Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators

被引:36
作者
Della Pietra, Francesco [1 ]
Gavitone, Nunzia [2 ]
机构
[1] Univ Molise, Dipartimento Biosci & Terr, Div Fis Informat & Matemat, I-86039 Termoli, CB, Italy
[2] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
Eigenvalue problems; torsional rigidity; anisotropic operators; stability estimates; POLYA-SZEGO INEQUALITY; CONVEX SYMMETRIZATION; WULFF THEOREM; P-LAPLACIAN; QUESTIONS;
D O I
10.1002/mana.201200296
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a sharp upper bound for the first Dirichlet eigenvalue of a class of nonlinear elliptic operators which includes the operator Delta(p)u = Sigma i partial derivative/partial derivative x(i) (vertical bar Delta u vertical bar(p-2) partial derivative u/partial derivative x(i)), that is the p-Laplacian, and (Delta) over tilde (p)u = Sigma i partial derivative/partial derivative x(i) (vertical bar partial derivative u/partial derivative x(i)vertical bar(p-2) partial derivative u/partial derivative x(i)), namely the pseudo-p-Laplacian. Moreover we prove a stability result by means of a suitable isoperimetric deficit. Finally, we give a sharp lower bound for the anisotropic p-torsional rigidity. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:194 / 209
页数:16
相关论文
共 32 条
[1]   Convex symmetrization and applications [J].
Alvino, A ;
Ferone, V ;
Trombetti, G ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :275-293
[2]  
Andrews B, 2001, INDIANA U MATH J, V50, P783
[3]  
Bellettini G., 1996, HOKKAIDO MATH J, V25, P537, DOI DOI 10.14492/HOKMJ/1351516749
[4]   The volume preserving crystalline mean curvature flow of convex sets in RN [J].
Bellettini, Giovanni ;
Caselles, Vicent ;
Chambolle, Antonin ;
Novaga, Matteo .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 92 (05) :499-527
[5]  
Belloni M, 2006, J EUR MATH SOC, V8, P123
[6]   Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators [J].
Belloni, M ;
Ferone, V ;
Kawohl, B .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (05) :771-783
[7]   Basis properties of eigenfunctions of the p-Laplacian [J].
Binding, Paul ;
Boulton, Lyonell ;
Cepicka, Jan ;
Drabek, Pavel ;
Girg, Petr .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (12) :3487-3494
[8]   An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit [J].
Brandolini, Barbara ;
Nitsch, Carlo ;
Trombetti, Cristina .
ARCHIV DER MATHEMATIK, 2010, 94 (04) :391-400
[9]   THE ISOPERIMETRIC PROBLEM FOR MINKOWSKI AREA [J].
BUSEMANN, H .
AMERICAN JOURNAL OF MATHEMATICS, 1949, 71 (04) :743-762
[10]   Overdetermined anisotropic elliptic problems [J].
Cianchi, Andrea ;
Salani, Paolo .
MATHEMATISCHE ANNALEN, 2009, 345 (04) :859-881