Multiplicity of fractional Fourier transforms and their relationships

被引:56
作者
Cariolaro, G [1 ]
Erseghe, T
Kraniauskas, P
Laurenti, N
机构
[1] Univ Padua, Dipartimento Elettron & Informat, I-35131 Padua, Italy
[2] Snell & Wilcox Ltd, Petersfield, Hants, England
关键词
Fourier transform; fractional Fourier transform; sampling theorem;
D O I
10.1109/78.815493
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The multiplicity of the fractional Fourier transform (FRT), which is intrinsic in any fractional operator, has been claimed by several authors, but never systematically developed, The paper starts with a general FRT definition, based on eigenfunctions and eigenvalues of the ordinary Fourier transform, which allows us to generate all possible definitions. The multiplicity is due to different choices of both the eigenfunction and the eigenvalue classes. A main result, obtained by a generalized form of the sampling theorem, gives explicit relationships between the different FRT's.
引用
收藏
页码:227 / 241
页数:15
相关论文
共 26 条
[1]  
ALMEDIA LB, 1993, P IEEE INT C AC SPEE
[2]   THE FRACTIONAL FOURIER-TRANSFORM AND TIME-FREQUENCY REPRESENTATIONS [J].
ALMEIDA, LB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :3084-3091
[3]   FRACTIONAL FOURIER-TRANSFORMS AND IMAGING [J].
BERNARDO, LM ;
SOARES, ODD .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (10) :2622-2626
[4]   A unified framework for the fractional Fourier transform [J].
Cariolaro, G ;
Erseghe, T ;
Kraniauskas, P ;
Laurenti, N .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (12) :3206-3219
[5]  
CARIOLARO G, IN PRESS NOVEL SET E
[6]  
CAUCHY AL, 1841, CR HEBD ACAD SCI, V12, P283
[7]   EIGENVECTORS AND FUNCTIONS OF THE DISCRETE FOURIER-TRANSFORM [J].
DICKINSON, BW ;
STEIGLITZ, K .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1982, 30 (01) :25-31
[8]  
GAUSS CF, 1866, WERKE, P265
[9]  
Hamermesh M., 1964, Group theory and its applications to physical problems, Vsecond
[10]  
KUNTZMANN J, 1959, METHODS NUMERIQUES I