Gold nanoparticles decorated silicate sol-gel matrix embedded reduced graphene oxide and manganese ferrite nanocomposite-materials-modified electrode for glucose sensor application

被引:8
作者
Madhura, T. Ravindran [1 ]
Kumar, G. Gnana [1 ]
Ramaraj, Ramasamy [1 ]
机构
[1] Madurai Kamaraj Univ, Ctr Photoelectrochem, Dept Phys Chem, Sch Chem, Madurai 625021, Tamil Nadu, India
关键词
Manganese ferrite; reduced graphene oxide; gold nanostructures; modified electrode; glucose; IN-SITU SYNTHESIS; OXYGEN REDUCTION; ELECTROCHEMICAL OXIDATION; HOLLOW SPHERES; COMPOSITES; HYBRID; ELECTROCATALYSIS; PROTEIN;
D O I
10.1007/s12039-019-1611-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gold nanoparticles decorated on silicate sol-gel matrix embedded manganese ferrite (MnFe2O4)-reduced graphene oxide (rGO) nanocomposites were synthesized through a facile chemical method. The prepared samples were characterized by using powder X-ray diffraction (XRD), UV-vis absorption spectroscopy (UV-VIS), energy-dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) analyses. The Au nanostructures on rGO-MnFe2O4 improved the electrocatalytic activity of the rGO-MnFe2O4@Au composite-materials-modified electrodes towards glucose oxidation. Cyclic voltammetry and amperometric methods were used to evaluate the electrocatalytic activity of the rGO-MnFe2O4@Au modified electrodes towards glucose oxidation in 0.1 M NaOH at a less-positive potential (0.2 V) in the absence of any enzyme or redox mediator. The nanocomposite-modified electrode (GCE/EDAS/rGO-MnFe2O4@Au) was successfully used for the amperometric sensing of glucose and the experimental detection limit of 10 M glucose was observed. The common interfering agents did not interfere with the detection of glucose. The present sensor showed good stability, reproducibility, and selectivity. The nanocomposite-modified electrode was successfully used for the determination of glucose in the urine sample.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Nanostructured ferrites: Structural analysis and catalytic activity [J].
Albuquerque, Adriana S. ;
Tolentino, Marcus V. C. ;
Ardisson, Jose D. ;
Moura, Flavia C. C. ;
de Mendonca, Renato ;
Macedo, Waldemar A. A. .
CERAMICS INTERNATIONAL, 2012, 38 (03) :2225-2231
[2]   Sonochemical and sustainable synthesis of graphene-gold (G-Au) nanocomposites for enzymeless and selective electrochemical detection of nitric oxide [J].
Bai, Renu Geetha ;
Muthoosamy, Kasturi ;
Zhou, Meifang ;
Ashokkumar, Muthupandian ;
Huang, Nay Ming ;
Manickam, Sivakumar .
BIOSENSORS & BIOELECTRONICS, 2017, 87 :622-629
[3]   Novel Silver Nanoparticle-Manganese Oxyhydroxide-Graphene Oxide Nanocomposite Prepared by Modified Silver Mirror Reaction and Its Application for Electrochemical Sensing [J].
Bai, Wushuang ;
Nie, Fei ;
Zheng, Jianbin ;
Sheng, Qinglin .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (08) :5439-5449
[4]   Enzyme-free glucose sensor based on a three-dimensional gold film electrode [J].
Bai, Yu ;
Yang, Weiwei ;
Sun, Ying ;
Sun, Changqing .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 134 (02) :471-476
[5]   Direct synthesis and characterization of gold and other noble metal nanodispersions in sol-gel-derived organically modified silicates [J].
Bharathi, S ;
Fishelson, N ;
Lev, O .
LANGMUIR, 1999, 15 (06) :1929-1937
[6]   The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection [J].
Cherevko, Serhiy ;
Chung, Chan-Hwa .
TALANTA, 2010, 80 (03) :1371-1377
[7]   Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection [J].
Cherevko, Serhiy ;
Chung, Chan-Hwa .
SENSORS AND ACTUATORS B-CHEMICAL, 2009, 142 (01) :216-223
[8]   3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection [J].
Dong, Xiao-Chen ;
Xu, Hang ;
Wang, Xue-Wan ;
Huang, Yin-Xi ;
Chan-Park, Mary B. ;
Zhang, Hua ;
Wang, Lian-Hui ;
Huang, Wei ;
Chen, Peng .
ACS NANO, 2012, 6 (04) :3206-3213
[9]   KINETICS AND MECHANISM OF OXIDATION OF AMINES AND ALCOHOLS AT OXIDE-COVERED NICKEL, SILVER, COPPER, AND COBALT ELECTRODES [J].
FLEISCHM.M ;
PLETCHER, D ;
KORINEK, K .
JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1972, (10) :1396-&
[10]   Non-enzymatic glucose sensor based on Au nanoparticles decorated ternary Ni-Al layered double hydroxide/single-walled carbon nanotubes/graphene nanocomposite [J].
Fu, Shuai ;
Fan, Guoli ;
Yang, Lan ;
Li, Feng .
ELECTROCHIMICA ACTA, 2015, 152 :146-154