An Approach to Probabilistic Data Integration for the Semantic Web

被引:0
作者
Cali, Andrea [1 ]
Lukasiewicz, Thomas [2 ,3 ]
机构
[1] Univ Oxford, Oxford Man Inst Quantitat Finance, Blue Boar Court,9 Alfred St, Oxford OX1 4EH, England
[2] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
[3] Techn Univ Wien, Inst Informat Syst, A-1040 Vienna, Austria
来源
UNCERTAINTY REASONING FOR THE SEMANTIC WEB I | 2008年 / 5327卷
基金
奥地利科学基金会; 英国工程与自然科学研究理事会;
关键词
Probabilistic data integration; Semantic Web; probabilistic description logic programs; description logics; normal programs; answer set semantics; well-founded semantics; probabilistic uncertainty;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Probabilistic description logic programs are a powerful tool for knowledge representation in the Semantic Web, which combine description logics, normal programs under the answer set or well-founded semantics, and probabilistic uncertainty. The task of data integration amounts to providing the user with access to a set of heterogeneous data sources in the same fashion as when querying a single database, that is, through a global schema, which is a common representation of all the underlying data sources. In this paper, we make use of probabilistic description logic programs to model expressive data integration systems for the Semantic Web, where constraints are expressed both over the data sources and the global schema. We describe different types of probabilistic data integration, which aim especially at applications in the Semantic Web.
引用
收藏
页码:52 / +
页数:3
相关论文
共 25 条
[1]  
[Anonymous], 2007, PODS, DOI [DOI 10.1145/1265530.1265531, 10.1145/1265530.1265531]
[2]  
Baral C, 2004, LECT NOTES ARTIF INT, V2923, P21
[3]  
Berners-Lee Tim., 1999, WEAVING WEB ORIGINAL
[4]  
Calì A, 2003, LECT NOTES ARTIF INT, V2871, P562
[5]   Tightly integrated probabilistic description logic programs for the semantic Web [J].
Cali, Andrea ;
Lukasiewicz, Thomas .
LOGIC PROGRAMMING, PROCEEDINGS, 2007, 4670 :428-+
[6]  
Calvanese D., 2006, P 10 INT C PRINCIPLE, P260
[7]  
DACOSTA PCG, 2006, P FOIS 2006, P237
[8]  
DACOSTA PCG, 2005, THESIS G MASON U FAI
[9]  
Eiter T, 2004, LECT NOTES COMPUT SC, V3323, P81
[10]   Combining answer set programming with description logics for the semantic Web [J].
Eiter, Thomas ;
Ianni, Giovambattista ;
Lukasiewicz, Thomas ;
Schindlauer, Roman ;
Tompits, Hans .
ARTIFICIAL INTELLIGENCE, 2008, 172 (12-13) :1495-1539